
USING SYMMETRY TO EVALUATE INTEGRALS 
 

 
 
Evaluation of Fourier series requires evaluating integrals of trig functions to determine 
the coefficients of the sin and cos terms of the Fourier series.  Many of these integrals 
appear daunting or at least irritating at first glance.  However, we can reduce our effort 
and time spent doing integrations if we make use of symmetry arguments in evaluating 
these integrals. 
 
Let’s look at some integrals that are commonly encountered in Fourier analysis.  For 
instance, if we are asked to find the Fourier series for f(x) = x on the interval {-π, π}, we 
would have to evaluate the integrals 
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to determine the coefficients an and bn in the Fourier expansion. 
 
Our first instinct in evaluating these integrals is likely to integrate by parts, but before we 
dive headlong into integration, let’s take a step back and look at the nature of the 
integrand in each case. 
 
In the first integral, the integrand is a product of x and cos(nx); we know that x is an odd 
function on the interval of integration, and that cos(nx) is an even function.  (Recall that 
the definition of an even function is that f(x) = f(-x); a condition met by cos(nx).  Also, 
we can remember that the Taylor series expansion of cos(x) involves only even powers of 
x.) 
 
The product of an even function and an odd function is an odd function, and the integral 
of an odd function integrated over an interval symmetric about the origin is zero.  Try 
integrating a few odd functions like xn over an interval symmetric about the origin, i.e, an 
interval {-L, L}.  
 
Now it is clear to us that the integral of x cos(nx) over any interval symmetric about the 
origin is zero, and that all an terms in the Fourier expansion of f(x)=x vanish.  This is not 
too surprising; we would expect the expansion of an odd function like f(x)=x to include 
only odd terms. 
 
The second integral above involves the product of two odd functions; the product of two 
odd functions is an even function.  {Consider two odd functions, g(x) and h(x).  If they 
are both odd they both have the property that f(x) = -f(-x), so g(-x)h(-x) = [-g(x)][-
h(x)]=g(x)h(x), and the product of these functions is even.} 
 
Knowing the integrand is even, we can make the sometimes useful simplification that: 
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Sec. 7.9 of Boas makes use of this simplification.  For other cases where you can make 
use of symmetry arguments to help in evaluating Fourier series, look at problem 23 on 
page 371 of Boas.  If we represent the plucked string as a periodic function on {0, L}, is 
that function odd, even (or neither)? Would you expect the Fourier series for this function 
to be composed of only sin or cos terms (or mixed terms)? 
 
Let’s look at some other integrals you might encounter in your future courses.  In 
statistical mechanics and thermodynamics, you will study the dynamics of gases, and in 
particular, you will have to evaluate integrals involving Gaussian terms, i.e., terms of the 
form exp(-x2).  I showed in a previous classnote (from Feb. 17) how to evaluate the 
integral: 
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The value of this integral over the entire x axis is simply √π .   
 
The study of kinetic theory will require evaluation of various moments of the Gaussian 
function, i.e., integrals of the form: 
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Let’s look at this integral for n=1.  Before we begin integrating by parts, we recognize 
that the integrand is a product of an odd function (x) and an even function (exp(-x2)).  
Thus, integral (2) represents an odd function integrated over a symmetric interval.  Using 
our symmetry arguments from before, we know we can set this integral equal to zero. 

How would we handle integrals of this form for even values of n?  For n = 2 we have the 
integral: 
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It is clear that we should use integration by parts, but what do we set equal to u and  dv in 
(4) below?  (Here, I am using the notation for integration by parts such that: 
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We can solve this integral rather easily by making the less than profound observation that 
x2 = x·x, so that we can write (3) as: 
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written in this way, it is clear that we should set u = x and dv = xexp(-x2), leaving us 
with: 
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The right hand side of (6) is very easy to evaluate. Since exp(-x2) goes to zero much faster 
than x as x->∞, the first term on the right is zero.  We recognize the second term as ½ the 
Gaussian integral (whose value we know to be π1/2), so the value of the integral in (3) is 

simply 
2
π . 

 

We can extend this reasoning to consider all integrals of the form  . ∫
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For odd values of n, we can make use of the same symmetry arguments as used before to 
show the integral vanishes over the indicated limits.   
 
For even powers of n, we can integrate by parts, this time making the somewhat more 
profound observation that xn = x·xn-1.  With this observation in hand, we can write the 
integral as: 
 

∫
∞

∞−

− dxxx n )exp( 2 = ∫ ∫
∞

∞−

∞

∞−

−∞
∞−

−− −
−

+−−=− dxxxnxxdxxxx nnn )exp(
2

1|)exp(
2
1()]exp([ 222121                               

                                                                                                                                       (7) 
 
And of course your first instinct is ‘oh great’, since after all this work we just recover 
another integral involving the exp(-x2) term times a power of x.  But if we look at this 
carefully, we can figure out how to evaluate these integrals without having to do any 
further explicit integration. 
 
If we look on the right hand side of (7), we know the first term vanishes when evaluated 
at , leaving us only with the unsolved integral.  However, we already know about ∞±



integrals of this form; n must be even for the integral to be non-zero, and if that is the 
case, then n-2 is also even.  So we can integrate this integral by parts until we get to an 

integral of the form (multiplied by some coefficient, of course). ∫
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Whenever we integrate by parts, the only nonvanishing part of the 

integral is the 
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1 22  term.  Our goal is to iteratively integrate by parts 

until we reach the case of n = 2, so that we are left only with the Gaussian integral as 

shown in (1).  So, let’s say we are asked to find the value of  , we 

proceed as: 
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Note that I have omitted the limits in the integrals; all limits should be understood to be 

. ∞±
 

How would we evaluate ?  First, use integration by parts to obtain: ∫
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See if you can figure out the general solution for integrals of the form . ∫
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