
EINSTEIN SUMMATION NOTATION

Overview
In class, we began the discussion of how we can write vectors in a more convenient and compact convention.  In addition to the
advantage of compactness, writing vectors in this way allows us to manipulate vector calculations and prove vector identities in a
much more elegant and less laborious manner.
  
The notation convention we will use, the Einstein summation notation, tells us that whenever we have an expression with a
repeated index, we implicitly know to sum over that index from 1 to 3, (or from 1 to N where N is the dimensionality of the space
we are investigating).

Vectors in Component Form
You are familiar with writing vectors in component form; the three dimensional vectors A and B can be expressed as: 

A = Ax x` + Ay y` + Az z`

B = Bx x` + By y` + Bz z`

The dot product of the vectors, A and B, is: 

(1)A ◊ B = Ax Bx + Ay By + Az Bz

We see immediately that the result of a dot product is a scalar, and that this resulting scalar is the sum of products. Since the dot
product is a sum, we can write this as :

(2)A ◊ B = S
3

i=1
 Ai  Bi

Where i is the arbitrary choice for indexing, and the summation runs from 1 to 3 to capture each of the three components of our
vectors.  

 We can also write the expression in (2) in Einstein summation notation; since we do have a repeated index (in this case the index
i), and our expression for a dot product becomes, simply:

(3)A ◊ B = Ai  Bi

where summation over i from 1 to 3 is assumed.  Learning to write vectors in this notation will make our later work enormously
easier.

Our First Vector Proof
Let' s consider our first proof, and we will solve it using standard component notation and then solve it using Einstein summation
notation.  We will show that :



(4)
d
dt

 HA ◊ BL = A • 
dB
dt

+ B • 
dA
dt

where the vectors A and B are both functions of time.  Using component notation, we write out the dot product of A and B using
(1) from above :

A•B = Ax Bx + Ay By + Az Bz

taking the derivative, and using the product rule for differentiation :

d
dt

 HA•BL =
d
dt

 I Ax Bx + Ay By + Az BzM =

Ax 
dBx

dt
+ Bx 

dAx

dt
+ Ay 

dBy

dt
+ By 

dAy

dt
+ Az 

dBz

dt
+ Bz 

dAz

dt

We can group these terms :

(5)BAx 
dBx

dt
+ Ay 

dBy

dt
+ Az 

dBz

dt
F + BBx 

dAx

dt
+ By 

dAy

dt
+ Bz 

dAz

dt
F

Look carefully at the terms in the brackets and compare with equation (1).  Notice that the bracket on the left is just A • dB
dt  and

that the bracket on the right is B • dA
dt , and we have proven our theory using component notation.

In Einstein summation notation, we begin with the definition of the dot product :

A•B = Ai  Bi

and differentiate using the product rule. Remembering that all of our terms on the right are scalars, we write :

(6)
d
dt

 HA•BL =
d
dt

 HAi BiL = Ai 
dBi

dt
+ Bi 

dAi

dt

The terms on the right each have a repeated index, so we recognize each term on the right represents a summation over three
coordinates.  Compare the terms on the right in (6) with the terms in (5), and you will see that the right hand terms in (6) are
equivalent to the bracketed terms in (5); in other words, eq. (6) is a one line proof of our identity; all that remains is to equate this
to d

dt
 HA ⋅ BL.This simple vector proof shows the power of using Einstein summation notation.  

The general game plan in using Einstein notation summation in vector manipulations is:

•  Write down your identity in standard vector notation;
• "Translate" the vectors into summation notation; this will allow you to work with the scalar    components of the vectors;
•  Manipulate the scalar components as needed;
• "Translate" the scalar result back into vector form.

In the proof above, point two is accomplished when you write:

d
dt

 HA ◊ BL =
d
dt

 HAi BiL ,

point three is accomplished with the differentiation :
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Ai 
dBi

dt
+ Bi 

dAi

dt

and the final result occurs on recognition that is the result we wish to prove.

Cross Products and Einstein Summation Notation
In class, we studied that the vector product between two vectors A and B is called the cross product and written as :
  

C = A x B

The resulting vector C has magnitude equal to | A || B | sinq, and has a direction mutually perpendicular to the vectors A and B.
We showed that in component notation, the cross product is :

(7)C = IAy Bz - Az ByM x` + HAz Bx - Ax BzL y` + IAx By - Ay BxM z`

The components of the cross product reveal a number of patterns :

•Each component of the vector C is a difference of products.

•Each component has a permutation of terms, that is, each component consists of terms of the form :

Aa Bb - Ab Ba

•The x`  component of C has no terms involving Ax or Bx; the same condition applies to the y`  and z
^
 components of C.

Before we can write cross products in summation notation, we need to develop a mathematical formalism that will reproduce the
patterns we describe above.  Just such a formalism exists, and it is  called the Levi-Civita permutation tensor, or just the
permutation tensor.  This permuatation tensor can be written for any number of dimensions, but for the most part we will be
dealing with three dimensional space.

The permutation tensor is written as eijk  where i,  j,  and k are indices corresponding to the three coordinate directions.  The
permutation tensor is defined to have the following values:

• 0 if any two indices are the same

eijk = • + 1 if all three indices are different and are cyclic

• - 1 if all three indices are different and are anti - cyclic

Cyclic permutations (or even permutations) are 123, 231, and 312; anti - cyclic (or odd) permutations are 132, 213, and 321.
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Properties of the Permutation Tensor
Before moving on to how we write cross products with the permutation tensor, let' s investigate some of its properties.
  
First, how many different ways can we write the tensor in 3 dimensions?  The permuation tensor has three indices, eijk , and there
are three ways of choosing i (it could be 1, 2 or 3), three ways of choosing j, and three ways of choosing k.  Therefore, there are
27 possible ways of writing eijk in 3-space.
  
While tedious, it is instructive to write all of these possible values:

e111 e211 e311

e112 e212 e312

e113 e213 e313

e121 e221 e321

e122 e222 e322

e123 e223 e323

e131 e231 e331

e132 e232 e332

e133 e233 e333

Of these 27 different values, 21 of them are zero, since they have one or more indices the same (refer to the first of the rules for
the value of the permutation tensor above).  Of the remaining six possible values, three of them are cyclic permutations (noted in
blue) and have value + 1, and six are anti - cyclic permutations of value - 1 (noted in red).

Writing Cross Products with the Permutation Tensor
Let' s start by rewriting eq. (7) from above :

C = IAy Bz - Az ByM x` + HAz Bx - Ax BzL y` + IAx By - Ay BxM z`

We will show that any component of the vector C, produced from the cross product of vectors A and B, can be written in the
form :

(8)Ci = eijk Aj Bk

This means that the ith component of C (where i can be 1, 2, or 3) can be expressed in terms of the permutation tensor. Let's go
into some detail to see how this works.  For specificity, let's say we want to find the x component of C, in other words, we are
going to set i=1 (since i=1 corresponds to the x component, i=2 corresponds to the y component, i=3 to the z component).

If we set i=1, then we know that the values of j and k must be 2 or 3, since the permutation tensor is zero if there are any repeated
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indices.  Looking at (8) above, we can see that both j and k are repeated on the right hand side, so we know we will sum over j
and k.  (Since we have set i=1 already, I will not show explicitly the summation for j or k =1).  Thus, with i=1, our implied
summation in (8) is:

(9)C1 = e122 A2 B2 + e123 A2 B3 + e132 A3 B2 + e133 A3 B3

The first and last terms on the right hand side of (9) are zero because there are duplicated indices; the terms highlighted in blue
and red are the only non zero terms.  The term highlighted in blue has a value of + 1 and the value highlighted in red has a value
of - 1, so that equation (9) tells us that the x component of C is :

(10)C1 = A2 B3 - A3 B2

Compare this to the form of eq. (7) and you will see this is exactly equivalent to the expression we obtained from a term by term
multiplication of components.

What happens if we set i=2?  We know that j and k will be either 1 or 3, and the only non zero terms that survive the summation
are:

(11)C2 = e213 A1 B3 + e231 A3 B1 = A3 B1 - A1 B3

Similarly, if i = 3, we find the z component of C as :

(12)C3 = e321 A2 B1 + e312 A1 B2 = A1 B2 - A2 B1

And we have accurately reproduced each of the individual components of the vector C.  A simple final step is to combine all
these components to yield the complete vector, so we need to sum all the components as :

(13)Ci ei = eijk Aj Bk ei

where we make our first use of "ei" to mean the ith unit vector; throughout the semester we will make use of e`  to refer to a unit
vector in some direction; if we expand the left side of eq. (12) in accordance with our understanding of Einstein summation, we
get:

(14)Ci ei = C1 e`1 + C2 e`2 + C3 e`3 = C1 x` + C2 y` + C3 z`

As a quick summation, the ith component of the cross product resulting from C = AxBis:

(15)Ci = eijk Aj Bk

and the complete vector C is :

(16)Ci ei = eijk Aj Bk ei

You should not be confused by the slight differences between (15) and (16); (15) tells you the value of any individual compo-
nent; (16) is the complete vector, and is computed by adding up all the individual components.

A Proof Using Dot and Cross Products
We know that the cross product of two vectors produces a third vector that is perpendicular to each of the original vectors.  In
other words, if C=AxB, we expect that A•C and B•C should be zero.  You can probably imagine how many steps this takes in
component form, let's prove this using summation notation.  We know the ith component of the vector C can be expressed as:
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(17)Ci = eijk Aj Bk

Taking the dot product of A and C is equivalent to finding Ai Ci, so we can write:

(18)A•C = Ai Ci = Ai eijk Aj Bk

All the terms on the right hand side of (18) are scalars, so we can reorder them in any way we wish since multiplication of scalars
is commutative.  In particular, we can rewrite (18) as :

(19)Ai eijk Aj Bk = Bk eijk Ai Aj

The final term on the right is the kth component of the cross product of AxA.  Since the cross product of any vector with itself is
zero, we have shown that A•C is zero.  An exactly similar analysis will show that B•C is zero.

6 einsteinsummationnotation.nb


