
REVIEW OF INTEGRATION
Trig Functions and Integration by Parts

Overview
In this note we will review how to evaluate the sorts of integrals we encounter in evaluating Fourier series.  These will include
integration of trig functions and also a quick review of integration by parts.

Derivatives of Trig Functions
Let' s begin with a quick review of the derivatives of the sin and cos functions, since knowing those will help us verify the results
of our later integrations.  We know from first year calculus :

(1)
d

dx
 Hsin HnxLL = n cos HnxL; d

dx
 Hcos HnxLL = -n sin HnxL

We can verify these statements using Mathematica :

D@8Sin@n xD, Cos@n xD<, xD

8n Cos@n xD, −n Sin@n xD<

Indefinite Integrals of Trig Functions
The results of the differentiations above suggest that the integrals of sin (nx) and cos (nx) are (ignoring any constants of integra-
tion) :

(2)‡ sin Hn xL dx =
-1
n

 cos Hn xL; ‡ cos Hn xL dx =
1
n

 sin Hn xL

We verify via Mathematica :

Integrate@8Sin@n xD, Cos@n xD<, xD

:−
Cos@n xD

n
,

Sin@n xD
n

>

And we also verify by differentiating the results to show they equal the original integrand :

D@8−1 ên Cos@n xD, 1ên Sin@n xD<, xD

8Sin@n xD, Cos@n xD<

As you have already seen, we encounter integrals involving sin (nx) and cos (nx) very frequently in our studies of Fourier series.



Integration by Parts
Integration by parts is a commonly used technique of integration that can be particularly useful if the integrand is a product of
two functions.  Suppose your integrand is of the form : 

(3)‡ u dv

where both u and v are functions of the same variable, then the well known statement of integration by parts is :

(4)‡ u dv = uv - ‡ v du

Let' s work a few examples to show how we apply this technique.  Consider the integral :

(5)‡ x ex dx

The integrand is a product, so we should investigate whether integration by parts will be useful. Our first step is to decide which
term in the integral in (5) corresponds to u and which corresponds to dv.  Let' s work this example through . In (5), I will set u = x
and dv = exdx.  This allows me to determine expressions for du and v :

(6)
u = x fl du = dx

dv = ex dx fl v = ex

We get the expression for v by integrating the expression for dv. Now that we can write u, v, du and dv, we can use eq. (4) to
solve our integral :

(7)‡ xÄ
u

 ex dx
dv

= x ex
É

uv
-‡ ex

Å
v

 dxÅ
du

The final integral on the right is elementary, so our complete answer is :

(8)‡ x ex dx = x ex -‡ ex dx = xex - ex = ex Hx - 1L

Which we quickly verify both by direct Mathematica integration and also by differentiating the result :

Integrate@x Exp@xD, xD

Æx H−1 + xL

D@x Exp@xD − Exp@xD, xD

Æx x

What would have happened if we initially chose u = ex and dv=x dx, then we would have:

du = ex dx; v =
x2

2
and our integration by parts would yield :

(9)‡ xex dx =
x2 ex

2
-

1
2

 ‡ x2 ex dx
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and our second integral would be more complicated than the first. We want our initial choice of u to produce the simplest
possible integral on the right side of our integration by parts. Let' s try an example involving trig functions :

(10)‡ x sin Hn xL dx

We know that if we set u = x, then du = dx and we can imagine our second integral will be straightforward.  On the other hand, if
we set u = sin (nx) and dv = x dx, then our second integral will be very complicated.  This tells us to assign :

(11)
u = x fl du = dx

dv = sin Hn xL dx fl v = -
1
n

 cos Hn xL

And we proceed via parts :

(12)

‡ xÄ
u

sin Hn xL dx
dv

= xÄ
u

 H -1
n

 cos Hn xL
v

L -· H -1
n

 cos Hn xL
v

L dxÇ
du

=

-x
n

 cos Hn xL +
1
n

 ‡ cos Hn xL dx =

-x
n

 cos Hn xL +
1

n2
 sin Hn xL

Verifying :

Integrate@x Sin@n xD, xD

−
x Cos@n xD

n
+

Sin@n xD
n2

The integral of Ÿx cos(n x) dx is easily understood with a selection of u=x and dv = cos(n x) dx:

(13)
‡ x cos Hn xL dx = x 

1
n

 sin Hn xL -
1
n

 ‡ sin Hn xL dx =

x sin Hn xL
n

+
cos Hn xL

n2

Verifying :

Integrate@x Cos@n xD, xD

Cos@n xD
n2

+
x Sin@n xD

n

Let' s try a slightly more complicated case :

(14)‡ x2 ex dx

We recognize this integrand also as a product, but we will see that we will have to employ integration by parts twice. Making the
obvious substitions of u = x2 and dv = ex dx:
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(15)‡ x2 ex dx = x2 ex - 2 ‡ xex dx

And we realize the last integral in (14) will require integration by parts. Fortunately, we have already done this integral (see
eq.(8) above), and we can write :

(16)‡ x2 ex dx = x2 ex - 2 ‡ xex dx = x2 ex - 2 Hxex - exL = ex Ix2 - 2 x + 2M

or :

Integrate@x^2 Exp@xD, xD

Æx I2 − 2 x + x2M

Integration by Parts with Definite Integrals

For our work with Fourier series, we are of course interested in evaluating these integrals between limits.  I show below how one
would do the integral of eq. (10) with limits of 0 to p. Not surprisingly, we just evaluate each term at these limits and find:

‡
0

p

x sin Hn xL dx =
-x cos Hn xL

n
0

p

+
sin Hn xL

n2

0

p

=

-1
n

@p cos Hn pL - 0D +
1

n2
@sin Hn pL - sin H0LD =

(17)
-p

n
 H-1Ln

Verifying :

Integrate@x Sin@n xD, 8x, 0, π<, Assumptions → Element@n, IntegersDD

−
H−1Ln π

n

One Final Example
Let' s see how we might approach a slightly more complex problem.  Suppose we wish to integrate :

(18)‡ ex sin Hn xL dx

Our integrand is a product, but both of the products are non - polynomials. Let' s see how we can attack this integral via parts.
We set :

u = ex fl du = ex dx
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dv = sin Hn xL dx fl v =
-1
n

 cos HnxL

Using these substitutions, our integral (which we define as I) becomes :

(19)I = ‡ ex sin Hn xL dx =
-1
n

 cos Hn xL ex -
-1
n

 ‡ ex cos Hn xL dx

And we are about to lose hope when we realize our integration by parts has produced another integral which also involves a
product of transcendental terms.  But, before we despair, let' s try to integrate the final integral in (19) by parts, using in this case
the substitutions :

u = ex fl du = ex dx; dv = cos Hn xL dx fl v =
1
n

 sin Hn xL

With this second substition, we have :

I = ‡ ex sin Hn xL dx =
-1
n

 cos Hn xL ex -
-1
n

 ‡ ex cos Hn xL dx =

-1
n

 cos Hn xL ex +
1
n
B1
n

 sin Hn xL ex -
1
n

 ‡ ex sin HnxL dxF =

(20)
-1
n

 cos Hn xL ex +
1

n2
 sin Hn xL ex -

1

n2
 ‡ ex sin Hn xL dx

And now this is really depressing, because we have yet again produced an integral with a product of transcendental terms ... but
... look at this last integral, it is simply our original integral I with the coefficient of 1 ë n2, so we can rewrite (20) as:

I =
-1
n

 cos Hn xL ex +
1

n2
 sin Hn xL ex -

1

n2
 I

where I = Ÿ ex sinHn xL dx.  Now, we just algebraically collect all terms in I:

1 +
1

n2
 I = ex 

sin Hn xL
n2

-
cos Hn xL

n

and after a little algebra we solve for I :

(21)I = ‡ ex sin Hn xL dx =
ex Hsin Hn xL - n cos Hn xLL

n2 + 1

And we beseech Mathematica for a response :

Integrate@Exp@xD Sin@n xD, xD

Æx H−n Cos@n xD + Sin@n xDL
1 + n2

You may recall that we solved very similar integrals using techniques from complex numbers on the first homework set of the
term.
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