
COMPUTING FOURIER SERIES

Overview
We have seen in previous notes how we can use the fact that sin and cos represent complete orthogonal functions over the
interval [-p,p] to allow us to determine the coefficients of a Fourier series.  Now, let's use this information to evaluate some
examples of Fourier series.  We will,  of course,  show how using Mathematica  can make our lives easier, especially in the
evaluation of integrals.

Our First Example
Let' s begin by computing the Fourier series of f (x) = x over the interval [-p,p].  Let's think about this for a moment; we are about
to represent a straight line by an infinte sum of sinusoidal curves.  We will first do the calculations outlined in previous notes, and
then show that these sums in fact give us the line y=x over the interval [-p,p].

First, let's write down the general form of a Fourier series.  We can write any function that is 2p periodic as:

(1)f  HxL =
a0

2
+ S

n=1

¶
@an cos Hn xL + bn sin Hn xLD

where we have to evaluate the coefficients :

(2)a0 =
1
p

 ‡
-p

p

f  HxL dx

(3)an =
1
p

 ‡
-p

p

f  HxL cos Hn xL dx

(4)bn =
1
p

 ‡
-p

p

f  HxL sin Hn xL dx

Evaluating these three coefficients will require that you be review integrating trig functions, and also review the value of trig
functions at certain values (e.g., knowing the value of sin and cos at 0, ± n p; ± (n p/2)).  

Let's proceed with our particular example.  Eqs. (2)-(4) will provide us with the coefficients that we substitute into (1) to find the
Fourier series for f(x)=x.  We will now compute these coefficients, and then produce the final Fourier series.

ü Finding the value of a0 :

We use eq. (2) to find the value of a0that we will use in our final Fourier series:



(5)a0 =
1
p

 ‡
-p

p

x dx =
1
p
B x2

2 p

-
x2

2 -p

F = 0

Or, using Mathematica to verify :

H1êπL Integrate@x, 8x, −π, π<D

0

Some of you may have been able to solve this using symmetry considerations; more on the use of symmetry in another classnote.

ü Finding the values of an :

We use eq. H3L along with Mathematica to find the values of an :

(6)an =
1
p

 ‡
-p

p

f  HxL cos Hn xL dx fl an =
1
p

 ‡
-p

p

x cos Hn xL dx

Integrate@x Cos@n xD, 8x, −π, π<, Assumptions → Element@n, IntegersDD

0

And we find that all over the coefficients an  are zero; again, those of you proficient with the use of symmetry arguments might
have seen this immediately. This result means that the only terms that will contribute to the Fourier series of f(x)=x will consist of
sin (n x) terms. We now determine those coefficients.

ü Finding the values of bn:

(7)bn =
1
p

 ‡
-p

p

f  HxL sin Hn xL dx fl bn =
1
p

 ‡
-p

p

x sin Hn xL dx

NOTE TO CLASS :  The calculation that appears below is incorrect.  Immediately below I will correct this error and
proceed through the rest of the computation using the correct values.

Clear@nD
H1êπL Integrate@x Sin@n xD, 8x, 0, π<, Assumptions → Element@n, IntegersDD

−
H−1Ln

n

Can you find the error in the Mathematica statement above?  Look at the limits : I have integrated between 0 and p instead of
between -p and p.  The correct calculation should be:

In[1]:= H1êπL Integrate@x Sin@n xD, 8x, −π, π<, Assumptions → Element@n, IntegersDD

Out[1]= −
2 H−1Ln

n

The correct answer is double the error above; exactly what you would expect from symmetry arguments.  (See the classnote on
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"Integrating Odd and Even Functions"). The correct version of the integral tells us that our coefficients are :
  

(8)bn =
-2 H-1Ln

n
We will see many expressions like this when we calculate Fourier coefficients. Let' s write out the first few coefficients explic-
itly to see what they look like :

(9)b1 = -H-1L1 = 2; b2 =
-H-1L2 2

2
= -1; b3 =

-2 H-1L3

3
=

2
3

If we substitute these coefficients into eq. (1), we can write out explicitly the first three terms of the Fourier series for f (x) = x :

(10)
x = b1 sin HxL + b2 sin H2 xL + b3 sin H3 xL + ...

= 2Bsin HxL -
sin H2 xL

2
+

sin H3 xL
3

+ ...F

Equation (10) represents the first three terms of the Fourier series for f (x) = x over the interval [-p,p].  You might wonder how it
is possible that a straight line can be represented by a sum of sine curves.  Let's plot these three terms out and see if we can
recognize the straight line y=x.  Remember, these are only the first three terms of an infinite series, so we should not expect a
perfect correlation with only three terms...so, here we go:

In[2]:= Plot@2 HSin@xD − Sin@2 xDê 2 + Sin@3 xDê3L, 8x, −π, π<D

Out[2]=
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Well, sort of.  Let' s try a few more terms and see what we get :
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In[3]:= Plot@2 HSin@xD − Sin@2 xDê 2 + Sin@3 xDê3 − Sin@4 xDê 4 + Sin@5 xDê 5 − Sin@6 xDê 6 − Sin@7 xDê7L,
8x, −π, π<D

Out[3]=
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Closer.  We could add more terms like this, but it would be laborious.  Let' s learn how to write this series in closed form (e.g.,
equation (1)) and work with it.  In closed form, this series becomes :

(11)x = 2 S
n=Ç

¶
 
-H-1Ln sin Hn xL

n

and we can now plot it using the Mathematica command for summation :

In[6]:= Plot@Sum@−2 H−1L^n Sin@n xDên, 8n, 1, 100<D, 8x, −π, π<, Epilog → Point@82, 2<DD

Out[6]=
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Now that' s a straight line. (Quick Mathematica note: the final part of the Plot statement in line[6] introduces us to the "Epilog"
option.  This allows us to add something to a graph after it has been plotted.  In this case, I wanted to plot the point {2,2} to show
that it does in fact lie on the line y=x as expected.  This helps verify that not only does our Fourier series produce a straight line,
but the proper straight line.)

 Let' s study input line[6] : it contains nested function calls. The "inner" call computes  the sum indicated in eq. (11).  The
expression in braces "{n,1,100}" means to sum the function from n = 1 to 100.  The outer call plots those calculations over the
interval [-p,p].  
 
 The new (and current) version of Mathematica  has a very powerful new feature, called "Manipulate".  You should copy the
following command exactly in your notebooks to see how it works.  In this case, we will treat the upper index of the summation
as a variable, in other words, we want to see how this Fourier series converges to f(x)=x as we vary the number of terms we use
in the summation:
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In[5]:= Manipulate@Plot@Sum@−2 H−1L^n Sin@n xDên, 8n, 1, ul<D, 8x, −π, π<D, 8ul, 1, 200<D

Out[5]=

ul

-3 -2 -1 1 2 3

-2

-1

1

2

Notice that in input line[5] I used "ul" as a variable to indicate the upper limit of the sum; the final braces "{ul,1,200}" will cause
Mathematica to recompute the plot.  When ul = 1, the plot will be based on only 1 term in the summation; when ul = 20, the plot
is based on summing the first 20 terms of the series.  This is a powerful new function that allows for more detailed studies of
these sorts of series than I have ever encountered.  This is one reason why I wanted to use Mathematica this term.

A second Example
For this example, let' s work out the answer to question #7 on p. 355 of Boas.  This is a little different from the first example
since we have two regimes for our function :

f HxL = : 0, −π < x < 0
x, 0 < x < π

Because of this, we will need to be careful in evaluating our coefficients eqs. (2) - (4). It should be obvious that the contributions
to all coefficients will be zero from the interval [-p,0], so we need to integrate only from 0 to p:

ü Finding a0

(12)a0 =
1
p

 ‡
0

p

x dx =
1
p

ÿ
p2

2
=

p

2
fl

a0

2
=

p

4

ü Finding an:

(13)an =
1
p

 ‡
0

p

x cos Hn xL dx

mfourierseries.nb  5



Clear@nD
H1êπL Integrate@x Cos@n xD, 8x, 0, π<, Assumptions → Element@n, IntegersDD

−1 + H−1Ln

n2 π

The output line above tells us the values of all the coefficients an. But this expression bears further scrutiny.  Notice that there is
a term involving H-1Ln.  This term will be -1 if n is odd, and +1 if n is even.  Thus, the value of an will be zero for all even values
of n, and will equal -2/(p n2M for all odd values of n.  We will need to be very careful to take all this into account in writing out
our Fourier series.

ü Finding bn :

(14)bn =
1
p

 ‡
0

p

x sin Hn xL dx

Clear@nD
H1êπL Integrate@x Sin@n xD, 8x, 0, π<, Assumptions → Element@n, IntegersDD

−
H−1Ln

n

ü Putting it together :

We take our values for the coefficients calculated above and substitute into equation (1) to get our Fourier series.  Writing out the
first three (non - zero) terms in each part of the series, we get :

(15)f  HxL =
p

4
-

2
p
B cos HxL

12
+

cos H3 xL
32

+
cos H5 xL

52
F + Bsin HxL -

sin H2 xL
2

+
sin H3 xL

3
+ ...F

Let' s try to plot this sum for say the first 101 terms. We will have to be careful to take into consideration the fact that the cosine
part of the series involves only odd integers. The simplest Mathematica way to handle this is :

Plot@Hπ ê4L − H2êπL Sum@Cos@n xDê n^2, 8n, 1, 101, 2<D +

Sum@−H−1L^n Sin@n xDên, 8n, 1, 101<D, 8x, −π, π<D

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

Consider the Sum bracket above : the notation "{n,1,101,2}" means to sum over n, from 1 to 101 indexing n by two. This is
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equivalent to the statement :

(16)S
n=1,3,5...

101
 
Cos Hn xL

n2
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