MATHEMATICA POTPOURRI

Now that you have a strong background in the fundamentals of Mathematica, here is a listing of some interesting aspects of Mathematica that might prove useful to you. Please check the documentation for more details and examples on each one.

More advanced plotting routines:

1) To plot in 3 dimensions in Cartesian coordinates:

```
In[235]:= Plot3D[Sin[x^2 - y^2], {x, -3, 3}, {y, -3, 3}]
```

```
Out[235]=
```

2) To plot a vector field:

To plot the 2D vector field \(\{y, -x\}\):

```
In[236]=
```

```
Out[236]=
```
In[236]:= VectorPlot[{y, -x}, {x, -3, 3}, {y, -3, 3}]

Out[236]=

To make this a 3 D field:

In[237]:= VectorPlot3D[{y, -x}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}]

Out[237]=

3) Plotting in polar coordinates:
In[262] = PolarPlot[2^2 Cos[2 θ], {θ, 0, 2 π}]

Out[262] =

4) Parametric plots (2 and 3 D)

In[264] = ParametricPlot[{3 Cos[t], 2 Sin[t]}, {t, 0, 2 π}]

Out[264] =
5) Solving differential equations analytically:
Let’s consider the differential equation describing damped oscillatory motion:

$$m \ddot{x}(t) + c \dot{x} + k x = 0$$

where m is mass, c is the damping constant and k is the spring constant:

```math
In[238]:= Clear[m, x, c, k]
DSolve[m x''[t] + c x'[t] + k x[t] == 0, x[t], t]
```

Out[239]= \[
\{\{x[t] \to e^{-\frac{\sqrt{c^2-4m} t}{2m}} C[1] + e^{\frac{-\sqrt{c^2-4m} t}{2m}} C[2]\}\}
\]

To solve with values and boundary conditions:

```math
In[246]:= m = 1; c = 0.2; k = 10;
DSolve[{m x''[t] + c x'[t] + k x[t] == 0, x[0] == 0, x'[0] == 10}, x[t], t]
```

Out[247]= \[
\{\{x[t] \to 3.16386 e^{0.2 t} \sin[3.1607 t]\}\}
\]

Solve this equation numerically:

```math
In[254]:= Clear[m, c, x, k]
m = 1; c = 0.2; k = 10;
s = NDSolve[{m x''[t] + c x'[t] + k x[t] == 0, x[0] == 0, x'[0] == 10.}, x, {t, 0, 10}]
```

Out[256]= \[
\{\{x \to InterpolatingFunction[\{\{0., 10.\}, \}\}, \\}\}\]

Plot the solution:
In[259]:= Plot[Evaluate[x[t] /. s], {t, 0, 10}, PlotRange -> All]

Out[259]=

Plot the Phase Diagram (v(t) vs. x(t)):

In[261]:= ParametricPlot[{x[t], x'[t]} /. s, {t, 0, 10}]

Out[261]=

6) Solve recursion relations like:

\[a_n = a_{n-1} + a_{n-2} \]

In[273]:= Clear[a]
RSolve[a[n] == a[n - 1] + a[n - 2], a[n], n]

With boundary conditions:

\[\text{In[275]} = \text{RSolve}\{a[n] = a[n - 1] + a[n - 2], a[1] = 1, a[2] = 1\}, a[n], n\}

\[\text{Out[275]} = \{a[n] \rightarrow \text{Fibonacci}[n]\}\]