PHYS 301
HOMEWORK #2--Solutions

On this homework assignment, you may evaluate integrals either by either direct integration, by
employing symmetry arguments, or by citing previous results derived in this course. For instance, if
one of the results from homework #1 helps evaluate an integral, you may cite that result and pro-
ceed. Display all work and/or provide your reasoning. You may use Mathematica to verify your
results, but must submit complete work.

We will frequently use the basic equations pertaining to Fourier series for functions that are 2 n
periodic on (-m, 7) :

dp @ .
f(X) = —+ X a,cosnx + b, sinnx
= n=1

2 n=1
1
A = —ff(x)dx ap =
T J-n

1 1
—ff(x)cos(nx)dx b, :—ff(x)sin(nx)dx
T J-n T J-m

1. For the function :

y 0, —-m<x<0
) = {XZ, O<x<nm

Find expressions for the Fourier coefficients and write the first three non zero terms of each expan-
sion (use the format shown in the answer to problem 2 on page 354 of the text). Do all integrals by
hand and show all work.

Solution : We use the standard equations to find the Fourier coefficients :
2

1 ) b8
aoz—fxdx:—
m Jo 3

1f 1[x23in(nx) 2 X ¢os (n X) 25in(nx)]
+ —
0

T

an=— | x?cos(nx)dx = —
T

n n2 nd 0

Since we are evaluating at x = 0 and x = 7, the sin terms vanish since sin (n ) is zero for all integer
values of n; therefore :
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We can summarize the b coefficients as :
] —x/n, neven
n— { m/n—4/n3x,  nodd
We can write the first three non zero terms of each series as :
f(x) =
&G C0S2X CcoS3X 4y aSin2x (x4 \
——2(cosx— + —...)+((7r——)smx——+(———)sm3x—...)
6 22 32 n 2 3 27xn

Verifying with Mathematica: Using the analytical expressions for the coefficients, we can verify
with Mathematica :

graphl = Plot[n"2/6+2Sum[(-1)*nCos[nXx] /n"2, {n, 1, 99}] +
Sum[ (-2 + (2-n"2x"2) (-1)~n) Sin[nx] / (n*3x), {n, 1, 99}1,
{X, -w, 7}, PlotStyle » {Blue, Thick}];
graph2 = Plot[x"2, {x, 0, n}, PlotStyle » {Red, Dashed, Thick}];
Show[graphl, graph2]

3 -2 -1 t 1 2 3

In the graph above, | plot the curve of the original function (for x > 0) on the same set of axes as the
graph derived from the Fourier expansion. To show that there really are two different curves, the
graph of the Fourier expansion is represented by the continuous thick blue line, and the graph of y =
x? is shown by the dashed red line.
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2. For the function :
f(X) = Abs[x], —m<Xx<nm
Find the Fourier coefficients and write out the first three non zero terms of the series expansion.
Solution :
First, a plot of this function will help our analysis greatly :

Plot[Abs[X], {X, -7, 7}]
30F
25F
20F

1sF

1o

05

-3 -2 -1 1 2 3

The graph shows that Abs[x] is an even function; making use of symmetry arguments, we can write
immediately :

2
aoz—fxdx:ﬂ
7w Jo

2 2rxsin(nx)|* 1 )
anz—fxcos(nx)dx= —[— ——fsm(nx)dx]
T Jo T n 0 n Jo

2 1 0, neven
] TN (b -1= { ~4/7n?, nodd

2.1 x
:—[—cos(nx)
mln2

0

b, = 0; there can be no odd terms in the expansion series of an even function

Hence, the Fourier series for this function is :

7 4 o cos(nx) x 4 Cos3X Ccos5x
fxX) =—-—-— 2 :———[cosx+ + +]
2 gan=l p2 2 n 9 25

Verifying through Mathematica :
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Plot[(x/2) - (4/ x) Sum[Cos[nX] /n”2, {n, 1, 31, 2}]1, {X, -3 x, 3x}]

-5 5

3. Find the Fourier coefficients and write out the first three non zero terms for :

; B 0, -7<Xx<0
) = {sin(2x), O<x<m

Solution : We use the standard equations to find the Fourier coefficients :
1 -1
ap = — fsin(Zx)dx = —(cos(2nn)—-1) =0
mJo 2n

note that cos (2 n ) is 1 for all integer values of n. For the a, coefficients, use the trig identity from
question 3 of HW 1 and a fair bit of algebraic manipulation to find: :

1 1
an :—fsin(2x)cos(nx)dx: —f(sin(2+n)x+sin(2—n)x)dx:
0 271 Jo

]:

T

T cos(n—2)X
+

1 [—cos(2+n)x

E; 2+n 0 n—2 0
1/=D"-1 =)"-1y (=D)"-1p 1 1 2[(-1)"—1] 0, neven
_[ - ]: [ - ]: = — dd
27t n-2 n+2 2r 'n-2 n+2 x(n?-4) aay O

Now, to find the b, coefficients, we use the trig identity from problem 1 of HW 1 and we set :

1 1
bn:—f'sin(zx)sin(nx)dx = Z—fcos(n—Z)X—COS(NZ)XdX:

T Jo T Jo

7T

1 [sin(n—Z)x sin(n+2)x]

2

n-2 n+2 0

It is easy to see that setting x = or x = 0 yields zero in all cases EXCEPT for when n = 2. In this
case, we calculate the single coefficient :

1 _ _ 1
bgz—fsm(Zx)sm(Zx)dx :E

T Jo
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Combining all these results, we get a Fourier series of :

-4 « cos(nx) sin2x —4,/cosx €os3X COS5X sin2 x
f) =— 3 + _ —( + + +...)+
m nodd n2_—4 2 n\12-4 3F-4 524 2

Verifying: We verify this series by plotting the Fourier expansion and the curve y = sin 2 x on the
same set of axes :
gl = Plot[Sin[2Xx] /2- (4/x) Sum[Cos[nx] / (n*-4), {n, 1, 51, 2}],

{x, -7, x}, PlotStyle -» {Red, Thick}];

g2 = Plot[Sin[2X], {X, O, w}, PlotStyle » {Blue, Dashed, Thick}];
Show[gl, g2]

1.0

—-05F

10+

And you see the two curves match for 0 < x <z, and the Fourier expansion is zero for - 7 < x <0.

4. Forf(x) =cosax, -m<Xx<gx wherea isnotan integer, find the Fourier coefficients and first
three non - zero terms of the expansion.

Solution : Using symmetry arguments with cos « X, an even function, we have :

1 2 2 d
Q=— | cosax = — | cosaxdx = —sinax| =
T J-n T Jo armn 0

2
— sina r (remember, a isnotan integer so sin « 7 IS not zero)
an

Using the cos addition formula to write cos x cos 'y = 1/2 (cos (x +y) + cos (X - y)) :

1
anz—jwcowxcosnxdx=
T J-n
2

2 1
—fCOSaXCOSI‘IXdXZ —f—[cos(a+n)x + c0os (@ — n) X] dx
m Jo nJo 2

T

lesin(@+n)x  sin(a@—n)x
it e

T a+n a-—n 0
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Expanding the sin expressions, realizing that the sin n & terms will be zero, and rearranging alge-
braically, we get :

1 2a ™ 2asinax(=1)"
= — sinax cosnx| =
n @?—-n? 0 7 (@ —n?)

Employing symmetry again, we recognize that all the b,, coefficients must be zero since cos a X is
an even function. Therefore, our Fourier series is :

sinanr  2asinan ozo (=1)"cos (nx)

f(X) = cosax = +
an n n=1  @?-n?
sina 2asincm(cosx C0S2X CO0S3X ) )
- + +
arn bis -1 a’-4 a?-9

Verifying with Mathematica; | have superimposed the two graphs with the Fourier Series repre-
sented by thick red dashes so you can tell there are actually two curves. (Since Mathematica must
have actual values to plot, | arbitrarily set @ = 2.4, there is nothing special about this number, I just
needed to give the program specfic input) :
a=2.4;
graphl = Plot[Sin[ax] / (ax) + (2aSin[ax] /x) Sum[(-1)" Cos[nx] / («*-n?), {n, 1, 31}],

{x, -m, 7}, PlotStyle » {Red, Dashed, Thick}];
graph2 = Plot[Cos[a X], {X, -m, 7}];
Show[graphl, graph2]

-1.0+

5. Use the results of question 4 to show that :

0 1
=2a X
n=1 aZ_nZ

ncotam —

LRIk

Solution : We start by setting x = 7 in eq. (1) above :
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sinar  2asinar « (=1)"cos(nn)
cosarm = + >
an . on=l g?-n?

But cos (n 7) = (=1)", so when x = &, the numerator inside the summation is simply 1, and we get :

sinamr  2aSinam « 1
coSarm = + >
an n n=1 o2 — n?

From this point, simple algebra yields our result, the partial fraction decomposition of the cotangent
function :

6. Later in the course, we will study a series of orthogonal polynomials on (-1, 1) called Legendre
polynomials. The first, second and third order Legendre polynomials are respectively :

1 1
Pi(X) = X Pz(x):5(3x2—l) P3(X)25(5X3—3X)

Show that these 3 Legendre polynomials satisfy orthogonality, namely :

1 0, m#n
LPm(x)andx: { o mon

If we wish to normalize the Legendre polynomials, i.e., :

1
cme X)Pmn(x)dx =1,
-1

deduce the expression for the factor ¢ which will satisfy orthonormality.

Solution : We can verify the orthogonality of the Legendre polynomials by direct integration :

1 S 1, 1(3 ,
Pix)P xdx:fx-—3x—1dx:—f3x—xdx:——x——
Il H0OF2 (0 -1 2< ) 2 J1 2(4 2)

Alternately, we could have used symmetry arguments. The integrand is an odd function (since the
product of an odd function and an even function is odd), and the integral of an odd function between
- L and L is zero. Similarly, we can use symmetry arguments to show that :

=0
-1

1
sz X)P;(x)dx = 0
1

Finally, by direct integration, we show that :
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1

1 1 1 L 1
fpl(X)PS(X)dX: fx-5(5x3—3x)dx: Ef5x4—3x2dx: - (x®*=x*)| =0
-1 -1 _

1 4 -1
Now let' s consider integrals of the form :

1
-1
Form=1:
fl d 1 2 1 3
Cc X X0OX = = C-— = = C1 = —
Form=2:

1.1 2 co, (1 2 5
C —.(3x%-1 dx:—f9x4—6x+1dx:c(—):1:>c:—
ZL[z ( )] 4 J {5 7

1

1.1 2 cs (1 2 7
03f[—-(5><3—3x)] dx:—3f25x6—30x4+9x2dX=03(—)=> Cg =
_1L2 4 Ja 7 2

From this pattern, we can deduce that we can produce orthonormal functions, i.e., functions satisfy-

ing :
1
cmf Pm(X)?dx = 1

-1

if we set
2m +1
Cm = 2

Let's see if our expression for ¢ will yield the correct result for the tenth Legendre polynomial :
m=10;

((2m+1) /2) Integrate[LegendreP[10, xX]"2, {X, -1, 1}]

1

And we obtain the expected result.



