
PHYS 301

HOMEWORK #5
Due : 20 Feb. 2013--Solutions

1. What is the value of the product eijk eijk where e is the Levi-Civita permutation tensor?

Solution :  A formal solution starts by noting there are 3 repeated indices (i, j, and k), so the product
represents the triple sum :
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eijk eijk =

e111 e111 + e112 e112 + e113 e113 + e121 e121 + e122 e122 + eÇ123 e123 + e211 e211 ...+ 20 further terms

The triple sum will produce 27 individual terms, each of which is a product. The value of 21 of the
products will be 0 x 0, but 3 of them will be (1) (1)  and another three will be (-1) (-1), so the value
of the triple sum is + 6.

2.  Use summation notation to prove that !(f g) = f !g + g !f  where f and g are scalar functions.

Solution :  We write the left hand side in summation notation :

!f g Ø ∑

∑xi

f g
Applying the product rule to f g :
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g + g
∑

∑xi

f = f !g + g !f

3.  Consider the function f (x) = x3 on (-1, 1); find the Fourier coefficients for this function and then
use Parseval' s theorem to evaluate :

S
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¶ 1

n6

You may (and should) use results from previous homework problems.  You may use Mathematica
to determine the expressions for the Fourier coefficients (including evaluating definite integrals and
refining those results for integer values of n).  
  

Solution :

Parseval' s Theorem relates the average value of the square of a  function to the Fourier coefficients :
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For the given function on (-1, 1), the average value of x32 is:

average value of x6 =
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Because f (x) is odd, we can use symmetry arguments to set all the a coefficients to zero; we find the
values of the b coefficients from :
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Substituting these results into Parseval' s Theorem, we get :
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We know from the last homework, that :
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Substituting these values into eq. (1), we get :
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4. In this problem, you will write a short Mathematica program to estimate the square root of a
number using Newton' s Method.  Your solution should make use of recursive relations and loop
controls that we have studied in lab.  Use the RandomInteger function in Mathematica to generate a
number between 1, 000, 000 and 10, 000, 000; this will be the number whose square root you will
find.  Your initial estimate should be 1, and you will iterate until the nth esimate differs from the (n -
1) st estimate by less than 0.001.  Your output should show explicitly and clearly: a) the initial
number, b) its square root,  and c) how many iterations it took to produce that answer.  Do not do
any direct calculation of the square root using Sqrt or N^1/2 or similar functions.  This question will
be worth 30 points (all other questions on this homework assignment are worth 10 points each.)

Solutions :  
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Using a while statement :
  

In[149]:= Clearf, number
number  RandomInteger1 000 000, 10 000 000;

f1  1;

fn_ : 0.5 number  fn  1  fn  1
n  2; WhileAbsfn  fn  1  0.001, n
Print"The square root of ", number, "  ",

fn ". The method required ", n, " iterations to converge."

The square root of 3 860 965  1964.93 . The method required 16 iterations to converge.

In this program, the first line clears any previous values of the variable number and the function f.
The second line uses the random integer generator to find the number whose square root we will
find; the third line sets our initial estimate of the square root to 1.

The fourth defines the new value of f in terms of the previous value of f.  In the fifth line, do you see
why we set n = 2?
    
The While statement uses as its test Abs[f[n] - f[n - 1]] > 0.001; this tests to see if the absolute value
of the difference between the nth and (n -1) st estimate differ by more than 0.001.  If they do, the
process continues and sets n -> n + 1.  If the test fails (i.e., the new value differs from the old value
by less than 0.001), the program exits the loop and outputs the most recent values of n and f (n).

Using an essentially equivalent program but with a For statement :
  

In[209]:= Clearf, number
number  RandomInteger1 000 000, 10 000 000;

f1  1;

fi_ : 0.5 number  fi  1  fi  1
Fori  2, Absfi  fi  1  0.001, i
Print"The square root of ", number, " is ", fi,

". The algorithm required ", i, " iterations to converge."

The square root of 9 639 825 is 3104.81. The algorithm required 17 iterations to converge.

Throw  and  Catch:   We  can  use  this  problem  to  introduce  a  very  useful  Mathemtica  tool,
Catch/Throw statements.  We can write this program using a Do loop and Catch Throw statements
to exit the loop once the condition that 
| f (n) - f (n - 1) | < 0.001 is met.

In[170]:= Clearnumber, f
number  RandomInteger1 000 000, 10 000 000;

f1  1; fn_ : 0.5 number  fn  1  fn  1
CatchDoIfAbsfn  fn  1  0.001, ThrowPrint"The square root of ", number, "  ",

fn ". The method required ", n, " iterations to converge.", n, 2, 100

The square root of 1 258 570  1121.86 . The method required 16 iterations to converge.
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I choose some arbitrarily large enough number for the upper limit of the do loop (in this case 100); I
know from prior experience that this technique will take only 16 or 17 iterations to converge, so by
setting the do loop to 100 iterations, I know we will achieve convergence long before the do loop
exits on its own.  The condition on this If statement is met if the absolute difference between succes-
sive iterations is less than 0.001; when this condition is true, the Throw statement exits the do loop.
The Catch statement "Catches" the output of the do loop and outputs it.  Throw statements are a
good way to exit a loop when a condition is met; but every Throw statement must have an accompa-
nying Catch statement.
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