
PHYS 301

HOMEWORK #7--Solutions

You may use Mathematica to verify results, but must show all work by hand.

1.  For the vector :

v = x2 x
`
+ y y

`
+ x y z z

`

find the value of the line integral


C

v ÿ dl

a) along the path that goes from the origin to (1, 1, 1) in three steps : from the origin to (1, 0, 0), then
to (1, 1, 0) then to (1, 1, 1)
   

Solution :  We will need to compute three separate line integrals (one for each of the discrete steps
of the path).  Each integral will have the form :


C

v ÿ dl =  vx x
`
+ vy y

`
+ vz z

`  ÿ dx x
`
+ dy y

`
+ dz z

` =  vx dx + vy dy + vz dz
For this vector function, this becomes :

 x2 dx + y dy + x y z dz
From (0, 0, 0) to (1, 0, 0) : Along the first segment from the origin to (1, 0, 0) we have that y = z = 0
and dy = dz = 0, so the line integral for this segment is simply :


0

1

x2 dx =
1

3

From (1, 0, 0) to (1, 1, 0) : Along the second segment, dx = dz = 0 and the line integral is :


0

1

y dy =
1

2

From (1, 1, 0) to (1, 1, 1) : For the final segment, x = y = 1, dx = dy = 0 so we have :


0

1

z dz =
1

2

The total line integral is the sum of these 3 segments, and is equal to 4/3.

b) along the straight line path from the origin to (1, 1, 1)



Solution :  Here, we can parameterize our function as :

x = y = z = t

dx = dy = dz = dt

and our limits of integration are from t = 0 to t = 1.  So our line integral becomes :

 x2 dx + y dy + x y z dz = 
0

1

t2 dt + t dt + t3 dt = 1

3
+

1

2
+

1

4
=

13

12

2.  If r is the position vector, find the value of the line integral

 r ÿ dr

along the circle defined by

x2 + y2 = a2

Solution 1 :  Recall that the position vector in the x - y plane is :

r = x x
`
+ y y

`

and therefore

dr = dx x
`
+ dy y

`

The integral becomes :

 r ÿ dr =  x dx + y dy
Since our path is along the circle of radius a, we can use the parameterization :

x = a cos q dx = - a sin q dq
y = a sin q dy = a cos q dq

With this parameterization, we obtain :


C
x dx + y dy = 

0

2 p

-a2 sin q cos q dq + a2 sin q cos q dq = 0

Solution 2 :  We can use Stokes' Theorem to note that :


C

r ÿ dr = 
S
! ä r ÿ n da

It is easy to show that the curl of the position vector is zero, hence the line integral is zero.  In a
similar vein, we know the line integral of a conservative field around a closed loop is zero.  Know-
ing that ! ä r = 0 allows this conclusion.
   

3. If r is the position vector, find the value of


S
r ÿ da
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where S is the surface of the unit cube with corners at the origin and (1, 1, 1).

Solution 1 :  The more elegant (and better) solution to this problem is to use the Divergence Theo-
rem and write :


S
r ÿ da = 

V
! ÿ r dt

Since we know that div r = 3, the integral is simply  3 d t = 3 V   where V is the volume of the
cube.  The volume is trivially 1, so the value of the integral is simply 3.

Solution 2 :  We could perform the surface integral explicitly integrating the flux of r through each
of the six faces of the cube.

For the surface in the y - z plane at x = 1, the outward normal is in the + x
`

direction, so the integral is

 r ÿ x
`

da = 
0

1


0

1

x dy dz = 1

For the opposite face, the integral is the same as above (except for a minus sign since the outward
normal is in the - x direction).  However,x = 0 at the "back" face of the cube so the value of the
integral is zero.

Each pair of faces will follow the same pattern; one face will yield a surface integral equal to 1 and
the opposite side will yield an integral equal to zero.  Summing over the three dimensions of the
box, we once again obtain a value of 3 for the entire surface integral.
  

4.  For the vector

v = 4 y x
`
+ x y

`
+ 2 z z

`

evaluate 
S
! äv ÿ da

over the hemisphere represented by the upper half plane of

x2 + y2 + z2 = a2

(this is the upper half of the sphere of radius a centered on the origin).

Solution :  We can solve this either by direct integration or by using Stokes’ Theorem, using the
circle at the base of the hemisphere to define our contour.  Then, we have


S
! äv ÿ da =  v ◊ dl =  vx dx + vy dy+ vz dz

with the contour being the circle of radius a centered on the origin. We can eliminate the dz term
since z = dz = 0 in the x - y plane. Using the same set of parameterizations that we used in problem
2 and obtain :

vx = 4 y = 4 a sin q

vy = x = a cos q
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dx = - a sin q d q
dy = a cos q d q

Substituting these into the integal yields :


S
! äv ÿ da =  v ÿ dl =  vx dx + vy dy = 

0

2 p

-4 a2 sin2 q + a2 cos2 q d q

We have shown many time previously in the course that 


0

2 p

sin2 q dq = 
0

2 p

cos2 q d q = p

so that the value of this integral is then - 3 p a2.

Now let' s compute the surface integral directly.  The   normal to the base of the hemisphere is in the
z direction, so we need to find the z component of the curl :

x
`

y
`

z
`

∑  ∑x ∑  ∑y ∑  ∑z

4 y x 2 z

fl
∑

∑x
x -

∑

∑y
4 y z

`
= - 3 z

`

The surface integral becomes :


S
! äv ÿ da = 

S
-3 z

`
ÿ z
`

da = -3 p a2 as before.

5. For the vector :  

F = 3 x y x
`
- y2 y

`

evaluate :


C

F ÿ dr

along the path y = 2 x2 from the origin to 1, 2
Solution :  Our parameterization will be :

x = t dx = dt

y = 2 t2 dy = 4 t dt

The line integral becomes :


C
Fx dx + Fy dy = 

0

1

3 t ÿ 2 t2 dt - 4 t4 ÿ 4 t dt = 
0

1

6 t3 - 16 t5 dt =
6

4
-

16

6
=
-7

6
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