
PHYS 301

HOMEWORK #11
Solutions

1.  Begin by taking the differentials of x, y and z :

dx = v cos f du + u cos f dv - u v sinf df

dy = v sin f du + u sin f dv + u v cosf df

dz = u du - v dv

dx2 + dy2 + dz2 = v2 cos2 f + v2 sin2 f + u2 du2 + u2 cos2 f + u2 sin2 f+ v2 dv2 +

u2 v2 sin2 f + u2 v2 cos2 f df2

+ 2 u v cos2 f u v sin2 f - u v du dv
+2 -u v2 cos f sin f + u v2 sin f cos f du df
+2 -u v2 cos f sin f + u v2 sin f cos f dv df

We can see that all the cross term (du dv, du df and dv df) sum to zero, leaving only terms involv-
ing perfect squares, one indication of an orthogonal transformation.                  

We can apply basic algebra and trig to the results above to obtain :

hu = u2 + v2 hv = u2 + v2 hf = u v

The unit vectors are found by writing the position vector as :

r = x x
`
+ y y

`
+ z z

`
= u v cos f x

`
+ u v sin f y

`
+

1

2
u2 - v2 z

`

u
`
=

∑r  ∑u

∑r  ∑u
=

v cos f x
`
+ v sin f y

`
+ u z

`

u2 + v2

v
`
=

∑r  ∑v

∑r  ∑v
=

u cos f x
`
+ u sin f y

`
- v z

`

u2 + v2

f
`
=

∑r  ∑f
∑r  ∑f =

- u v sin f x
`
+ u v cos f y

`

u v

You can also confirm that the transformation is orthogonal by verifying that all dot products satisfy

e
`

i e
`

j = dij



2.  We begin with the expression for acceleration in spherical polar coordinates, given on the last
page of the solutions for the last homework :

a = r.. - r q
° 2
- r f

° 2
sin2 q r

`

+r q.. + 2 r
° q
°
- r f

° 2
sin q cos q q`

+r f.. + 2 r
° f
°

sin q + 2 r q
°
f
°

cos q f`

Since each of the rings has a fixed radius, all terms involving r°   and r
..
 will be zero.  Similarly, since

all angular velocities are constant, all second derivatives of f and q are zero.  The pink ring is rotat-
ing only in the f direction, while the blue and green rings are rotating in both q and f.  Therefore,

the acceleration expression for the pink ring will not have  q
°
 terms, while the expressions for the

other rings will.  Thus, we can write the acceleration of a particle on the pink ring as:

a = - rwa
2 sin2 q r

`
- rwa

2 sin q cos q q
`

where wa is the angular velocity about the polar axis.  If we call wb the angular velocity about the
equatorial axis, we have for the blue and green rings:

a = - rwb
2 - rwa

2 sin2 q r
`
- rwa

2 sin q cos q q
`
+ 2 rwa wb cos q f

`

The North Pole of the pink ring corresponds to q = 0 in the spherical polar coordinate system (polar
angles are measured from the north pole down) so the acceleration is zero since sin 0 = 0.

3.  Laplace' s equation in spherical coordinates is :

!2 V =
1

r2

∑

∑r
r2
∑V

∑r
+

1

r2 sin q

∑

∑q
sin q

∑V

∑q
+

1

r2 sin2 q

∑2 V

∑f2

Since our function :

V = rn cos q

has no f dependence, we know that ∑V/∑f is zero, and we can omit the last term in Laplace' s equation.  Substitut-
ing our function into Laplace' s equation gives :

!2 V =
1

r2

∑

∑r
r2 n rn-1 cos q + 1

r2 sin q

∑

∑q
sin q -rn sin q = 0

In the first term on the right, cos q is a constant as is r in the second term, allowing us to write :

!2 V =
n cos q

r2

d

dr
rn+1 - rn-2

sin q

d

dq
sin 2 q = 0

Doing the indicated differentiations :

!2 V = n n+ 1 cos q rn-2 -
2 rn-2 sin q cosq

sin q
= 0

Factoring out common terms :

!2 V = rn-2 cos q n n+ 1- 2 = 0 fl n = -2, 1
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For each of the differential equations, we will assume solutions of the form :

y = S
n=0

¶
an xn

with derivatives :

y ' = S
n=1

¶
n an xn-1 y '' = S

n=2

¶
n n- 1 an xn-2

In each of the solutions below, I will be explicit about lower limits, but will often omit upper limits
on the summations since they are infinity in all cases.

4.  We know the solutions to this equation are sin and cos, let' s derive them using series techniques :

y ''+ y = 0 fl S
n=2

¶
n n- 1 an xn-2 + S

n=0

¶
an xn = 0

Re - index the first summation by setting k = n - 2 and obtain :

S
n=0

n+ 2 n+ 1 an+2 xn + S
n=0

¶
an xn = 0

Combining into one summation :

S
n=0

Ñ
xnn+ 2 n+ 1 an+2 + an = 0 fl an+2 =

-an

n+ 2 n+ 1
This recursion relation shows there are two branches of the solution, and we obtain for coefficients :

a2 =
-a0

2
a4 =

-a2

4 ÿ 3
=

a0

4 ÿ 3 ÿ 2
a6 =

-a4

6.5
=
-a0

6!

a3 =
-a1

3 ÿ 2
a5 =

-a3

5.4
=

a1

5!
a7 =

-a5

7 ÿ 6
= -

a0

7!

And our series solution is :

y = a0 1-
x2

2
+

x4

4!
-

x6

6!
+ ... + a1 x-

x3

3!
+

x5

5!
-

x7

7!
+ ...

We can easily see that the first term on the right is simply cos x, and the second is sin x.

5. y ''+ x y = 0

S
n=2

¶
n n- 1 an xn-2 + x S

n=0

¶
an xn = 0

Multiply through by the x in the second term and get :

S
n=2

¶
n n- 1 an xn-2 + S

n=0

¶
an xn+1 = 0

Re - index by setting n Ø  n - 2 in the first sum and n Ø  n - 1 in the second sum to get :

S
n=0

n+ 2 n+ 1 an+2 xn + S
n=1

an-1 xn = 0
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We strip out the first term in the first sum so that both sums have the same lower limits :

2 a2 + S
n=1

n+ 2 n+ 1 an+2 + an-1 xn = 0

Yields the recursion relation :

an+2 =
-an-1

n+ 2 n+ 1
and also the result :

a2 = 0

This recursion relation looks similar to the one obtained in problem 4, except notice now that the n
coefficient is a multiple of the (n - 3) coefficient.  Since we know that a2 =0, we also know that a2 =
a5 =  a8 = ... = 0

The recursion relation yields :

a3 =
- a0

3 ÿ 2
a6 =

-a3

6 ÿ 5
=

a0

6 ÿ 5 ÿ 3 ÿ 2

a4 =
-a1

4 ÿ 3
a7 =

-a4

7 ÿ 6
=

a0

7 ÿ 6 ÿ 4 ÿ 3

The solution is :

y = a0 1-
x3

3 ÿ 2
+

x6

6 ÿ 5
- ... + a1 x -

x4

4 ÿ 3
+

x7

7 ÿ 6 ÿ 4 ÿ 3
+ ...

These solutions, which generate  functions which oscillate in some regions (like trig functions) are
called Airy Functions and appear in the study of optics (diffraction).   

6. y '' - 2 x y' - 2 y = 0

S
n=2

¶
n n- 1 an xn-2 - 2 x S

n=1

¶
n an xn-1 - 2 S

n=0

¶
an xn = 0

After multiplying through by x in the second summation :

S
n=2

¶
n n- 1 an xn-2 - 2 S

n=1

¶
n an xn - 2 S

n=0

¶
an xn = 0

We need only re - index in the first sum by setting n Ø n - 2 :

S
n=0

n+ 2 n+ 1 an+2 xn - 2 S
n=1

¶
n an xn - 2 S

n=0

¶
an xn = 0

We strip out the n = 0 terms in the first and third sums :

2 a2 - 2 a0 +Sxnn+ 2 n+ 1 an+2 - 2 n an - 2 an = 0

Since

2 a2 - 2 a0 = 0 fl a2 = a0

and the recursion relation is
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an+2 =
2 n+ 1 an

n+ 2 n+ 1 = 2
an

n+ 2

From which we obtain :

a2 = a0 as expected a3 =
2 a1

3

a4 =
a2

2
=

a0

2
a5 =

2 a3

5
=

4

15
a1

a6 =
a4

3
=

a0

6
a7 = 2

a5

7
=

8

105
a1

and the solution is 

y = a0 1+ x2 +
x4

2
+

x6

6
+ ... + a1 x+

2 x3

3
+

4

15
x5 +

8

105
x7 + ...

Let' s see if we can make sense of these solutions.  Notice that the even branch is just the Taylor

expansion of ex2
.  If we solve the original differential equation using the DSolve routine we obtain:

DSolvey''x  2 x y'x  2 yx  0, yx, x

yx  x2
C2  1

2
x2

 C1 Erfx

and see that in fact one solution is merely ex2
, and the other is a multiple of this solution involving

the “error function” which is defined as:

erf x = 2

p


0

x

e-t2 dt

It is the area under a Gaussian curve from the origin to x.  You might have learned in multivariable
the "trick" that allows you to compute the integral of this function from 0 to ¶ (or from - ¶ to ¶),
but the integral from 0 to any finite value of x must be computed numerically.  This function arises
frequently in statistics and in solving heat diffusion problems.  If we use the Mathematica series
function, we can verify that our second solution is accurate :



2
SeriesErfx Expx^2, x, 0, 8

x 
2 x3

3


4 x5

15


8 x7

105
 Ox9

Which matches our series solution.
  

7. y '' - x2 y' - y = 0
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S
n=2

¶
n n- 1 an xn-2 - x2 S

n=1

¶
n an xn-1 - S

n=0

¶
an xn = 0

Multiplying by x2 in the second sum and re - indexing :

S
n=0

n+ 2 n+ 1 an+2 xn - S
n=2

¶ n- 1 an-1 xn - S
n=0

¶
an xn = 0

Stripping out the n = 0 and n = 1 terms in the first and third sums :

2 a2 + 6 a3 x - a0 - a1 x +Sxnn+ 2 n+ 1 an+2 - n- 1 an-1 - an = 0

We obtain the recursion relation :

an+2 =
n- 1 an-1 + an

n+ 2 n+ 1
and the "stripped out" terms yield :

2 a2 - a0 = 0 fl a2 =
a0

2

6 a3 x- a1 x = 0 fl a3 =
a1

6

n = 1 fl a3 =
a1

6
as expected

n = 2 fl a4 =
a1 + a2

12
=

a1

12
+

a0

24

n = 3 fl a5 =
2 a2 + a3

20
=

a2

10
+

a3

20
=

a0

20
+

a1

120

and the series soluton is

y = a0 1+
x2

2
+

x4

24
+

x5

20
+ ... + a1 x +

x3

6
+

x4

12
+

x5

120
+ ...

We  can  test  our  solution  against  a  numerical  solution  of  the  differential  equation.   Using  the
NDSolve program, we can determine the numerical solution to our ODE via :

In[46]:= s  NDSolvey''x  x2 y'x  yx  0, y0  1, y'0  1, y, x, 0, 2
Out[46]= y  InterpolatingFunction0., 2., 

Where I use as initial condition y (0) = y' (0) = 1.  In our series solution, this translates as

a0 = a1 = 1

values you can verify by setting x = 0 in the function and the first derivative.

We can plot our solution :

6   phys301-2014hw11s.nb



In[47]:= PlotEvaluateyx . s, x, 0, 2, PlotRange  All

Out[47]=

0.5 1.0 1.5 2.0

5

10

15

20

and we see the value of y rises rapidly with x, so we will need to use quite a few terms in our series
solution to match it.  Below I write a short program to compute a coefficients and thus the series
solution, and plot it with respect to the numerical solution :

In[48]:= Clearf, a
a0  1; a1  1; a2  a0  2;

an_ :
n  3 an  3  an  2

n n  1
f  Suman x^n, n, 0, 10;

s  NDSolvey''x  x2 y'x  yx  0, y0  1, y'0  1, y, x, 0, 2
Out[52]= y  InterpolatingFunction0., 2., 
In[53]:= g1  PlotEvaluateyx . s, x, 0, 2, PlotRange  All;

g2  Plotf, x, 0, 2, PlotStyle  Red;

Showg1, g2

Out[55]=

0.5 1.0 1.5 2.0

5

10

15

20

And we see that we have decent agreement to about x = 1.8 with some variation after that.  If we use
more terms in the series :
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In[56]:= Clearf, a
a0  1; a1  1; a2  a0  2;

an_ :
n  3 an  3  an  2

n n  1
f  Suman x^n, n, 0, 20;

s  NDSolvey''x  x2 y'x  yx  0, y0  1, y'0  1, y, x, 0, 2
Out[60]= y  InterpolatingFunction0., 2., 
In[61]:= g1  PlotEvaluateyx . s, x, 0, 2, PlotRange  All;

g2  Plotf, x, 0, 2, PlotStyle  Red;

Showg1, g2

Out[63]=

0.5 1.0 1.5 2.0

5

10

15

20

you can see that we achieve better agreement, suggesting that our series solution is valid.
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