PHYS 301
HOMEWORK #5

Solutions

On this homework assignment, you may use Mathematica to compute integrals, but you must sub-
mit your Mathematica output with your assignment.
-1, -1<x<0

1. Forf (x) = { 1 O<x<1
Find the Fourier coefficients and write out the first three non - zero terms of the series expansion.

Solution : This is an odd function on (-1, 1), so we know that the a coefficients are zero. Since the
function is 2 L = 2 periodic, L = 1. Computing the b coefficients :

by = %f_llf x)sin(nzx)dx = 21;11- sin(nzrx)dx = ﬁcos(nnx)ﬁ) =

4
) 2 —, odd
= (cos(hm)-1) = =1A-(-1)" = { nr
nx nx 0, even
Therefore, our Fourier series is :
f(x) = g[sinnx + L‘;’”X + sins—gx +..]

Verifying via Mathematica :
Plot[ (4 / x) Sum[Sin[nxXx] /n, {n, 1, 31, 2}], {X, -3, 3}]

-0.5

-

X, O0<x<1

2. Forf (x) = {2—x2 l<x<?
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In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=

Out[4]=

In[5]:=

Out[5]=

In[6]:=

Out[6]=

extend f to construct a) an odd function on (-2, 2) and b) an even function on (-2, 2). Compute the
Fourier coefficients for each series and write out the first three non - zero terms of each expansion.
(20 pts for this problem).

Solution : a) If we construct an odd function on (-2, 2), we know that only the b, coefficients will
be non - zero; we compute these via :

2 2 1 2
b, :Eff(x)dx = fxsin(nnx/Z)dx +f(2—x2)sin(n7rx/2)dx
0 0 1

We obtain :
Integrate[x Sin[nx X /2], {X, 0, 1}]1 + Integrate[ (2 -Xx"2) Sin[nxXx /2], {X, 1, 2}]

—ZnNCOS[”—Z’T} +4Sin["—;]

+

n2 n2

2 ((8+n?n?) Cos[”—z”} +2 (-4+n272) Cos[nr] +4nn (Sin["—;] -2sinnn]))

n3 53

Simplifying this output using the fact that n is an integer :

Simplify[%, Assumptions » n e Integers]

4 ((-1)" (-4+n252) +4Cos[Z'] +3nxSin[Z]])

n3 3

If we examine this expression, we see that the argument of the trig functions (n 7/2) indicates we
will need to consider 4 separate cases (i.e., 4 separate values) of n.

Since we have terms involving sin and cos of n 7/2, we know that we need to consider cases where
n={1, 2, 3, 4}. We can use the Mod command successively in conjuction with Assumptions :
Simplify[%, Assumptions -» Mod[n, 4] == 1]

4(4+3nﬂ—n2ﬂ2)

n3 3

(These are the coefficientswhenn=1,5,9, ...)
Simplify[%%, Assumptions -» Mod[n, 4] = 2]

4 (-8+n22)
n3 3

(These are the coefficients when n = 2, 6, 10, ...)

Simplify[%%%, Assumptions » Mod[n, 4] == 3]

4(74+3n7r+n27r2)

n3 53

(These are the coefficients forn=3, 7, 11, ...)
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7= SImpliFy[%%%%, Assumptions -» Mod[n, 4] == 0]

4
Out[7]= ——
nrt

(Finally, these are the coefficients for n = 4, 8, 12, ...)

Using these data, the first few coefficients are :

16+ 37 —n2
1= ——FF——
3
-32 +167°
by = ——
8
16 — 36 7 — 36 2
by =
27 nd
1
by = —
n

And we can write the first few non - zero terms of the expansion, using these coefficients, as :
f(X) = bysin(rx/2)+bysin(2ax/2)+bssin(3nX/2)+bssin(dnx/2)
You can verify these results by writing the following short code :

ne7:= Clear[bn, f]
bn = Integrate[xSin[nx X /2], {X, 0, 1}] + Integrate[ (2 -x"2) Sin[nnxx /2], {X, 1, 2}]1;
f=Which[0<Xx<1,X,1<x<2,2-x"2];
Plot[{f, Sum[bnSin[nxXx /2], {n, 21}1}, {X, -2, 2}]

out[70]= . . . . I . . . . . . . . I

ol
b) For the even solution, we extend f as an even function on (-2, 2). We can employ symmetry to
argue that the by, coefficients are zero, and that the a, coefficients can be determined from :

2 1 2 1
ao:—ff(x)dx: fxdx+f(2—x2)dx: —
2 Jo 0 1 6
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In[144]:=

Out[150]=

We use Mathematica to compute the a, coefficients and plot the function :

Clear[a0, an, f]

f=Which[0O<Xx<1,X,1<x<2,2-x"2];

a0 = Integrate[x, {xX, 0, 1}] + Integrate[2 - X2, {X, 1, 2}];

an = Integrate[fCos[nnxXx /2], {X, 0, 2}]:

Print["a0 = ", a0, "; ', "an = ", an]

Print["The first five terms of the Fourier expansion are: ",
a0/2+Sum[anCos[nnx /2], {n, 5}]]

Plot[a0 /2 +Sum[anCos[nx X /2], {n, 21}1, {X, -2, 2}]

1 4(nrr—3n7rCos[n—2"}+4nnCos[n7rj+4Sin[
a0 = —; an = -
6 n3 3

The first five terms of the Fourier expansion are:

”—2"} -4sin[nx] +n2 2 Sin[nn])

1 4(4-3mCos[Z] gcosinx] 4 (-4-9m Cos[22*] cos[2,x] 4 (4-157) Cos[22*]

12 3 2 27 73 2 72 125 3

And the plot of this Fourier expansion :
1.0

_10l

3. Problem 24, p. 371 of the text.

Solution : The first thing we need to do to solve this problem is write the equation of the string on

(0, L). Using simple geometry, we have :

4hx/L, O<x<L/4
f(x) = ¢ 2h—-4hx/L, L/4<x<L/2
0, L/2<x<L

Knowing we are constructing a sin series, we know we need only worry about the b coefficients,
and we can calculate them via :

1 2
by :—ff(x)sin(nyrx/L)dx= —fo(x)sin(nnx/L)dx:
L J-L L Jo



In[161]:=

In[162]:=

out[162]=

In[167]:=
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2
— (Integrate[(4hx /L) Sin[nwx /L], {X, 0, L/4}] +
L

Integrate[ (2h-4hx /L) Sin[nxx /L], {X,L/4,L/2}])

and when we do this integration we get :
5 ( hL(-nx Cos[n—:]+4 Sin[n—;])

n2 2

N hL(nz Cos| |+4 Sin[% | -4 Sin[ 7 ]) )

n2 2

L

Which by inspection becomes (well, with a little help from) :

Simplify[%, Assumptions » n € Integers]

64h Cos[”—g”] Sin["—B’T]3

n2 72

The nth term of the Fourier expansion is the nth b coefficient times Sin[n & x/L]. We can verify that
these coefficients yield the proper curve by setting L and h to arbitrary but reasonable values
(Mathematica won' t print symbolic functions) :

Clear[f, bn, x, h, L]
h =0.1; L=1.0;
f=Which[0O<x<L/4,4hx/L,L/4<x<L/2,2h -4hx/L,L/2<x<L,0];
bn=2/L (Integrate[4hxSin[nxx/L] /L, {X,0,L/4}] +

Integrate[(2h - 4hx /L) Sin[nxx /L], {X,L/4,L/2}]);
Plot[Sum[bnSin[nxx /L], {n, 21}1, {X, 0, L}]

0.08 |-

0.06 -

4. Consider the following graph of one complete cycle of voltage vs. time :
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40 -

20 -

0.005 0.910 0.015 0.020

50, 0O<t<1/100

correspondingto V (t) = { 50, 1/100 <t<1/50

where V is measured in volts and t in seconds.

Write the Fourier series representing this pattern (assume this part of the graph is repeated 50
times/second).

Solution : Since the entire cycle lasts a duration of 1/50 s, the cycle is 2 L = 1/50 periodic, implying
that L = 1/100 in this calculation. We use the familiar equations to find coefficients :
1 1/100 1 1/50

Qg = ——— 50dt - —— 50dt = 0
1/100 Jo 1/100 Jy/100

1 1/100 1/50
= ——| f 50 cos[100 7 t] dt — f 50 cos[100n 7 t] =
1/100tJo 1/100

1/100 1/50

50
100[1 {sin(100nzxt) —sin(100nxr)

00ns

0 1/100

50
— (in(nx) = (sin(2nx) —sin(nx)) =0
nm

1 1/100 1/50
by = —[f 50sin[100 n 7 t] dt — f 50sin[100 n 7 t] dt =
1/100%Jo 1/100

1/100 1/50

50
—[— cos (100 n«t) +¢0s (100nxt)

nx

0 1/100

50 50 ,
—[-{cos(nm)-1} +(cos(2nn)—cos(nn)}] =—[201-(-D"] = { nx
nm nm

200 « sin(100nzt) 200
Vi) = — 3 ——— —[S|n(1007rt)+
7T odd n T

Verifying :

sin(3-100xt) sin(5-100xt)
+ c +]
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Plot[ (200 / x) Sum[Sin[100nxt] /n, {n, 1, 31, 2}], {t, 0, 3/50}]

60 -

40 -

-20+

—60 -

5. Use the function in problem 1 of this assignment to find the value of

o 1
Z R
oddn n2
Solution : We will use Parseval' s theorem :
2 ao 2 l o 2 1 (e 2
average value of (f (x))“on(-1,1) = (—) +— Z aj+— Z by
2 2 n= 2 n-1

Since the length of this interval is 2, we write the average of f2 as:

1
—fldx:l
2 J1

The Fourier series for this problem shows that all the a, coefficients are zero, and that
4
b, = — forodd values of n
nnu
Therefore,
—z(—) =— X —=1> X — =—
2 oddn\nor 2

We could have figured this out from the result derived in class for the infinite sum of all the recipro-
cal squares, namely

We can find the inifinite sum for the even numbers by noting that all even numbers are divisible by
2, so that we can represent them as 2 n. Thus, the sum of all even terms is simply :

o 1 0 1 1 » 1 1 7T2 7T2

E—: :—Z—:—o—:—

even 2 n=1 (2 n)2 4n=1pn2 4 6 24

The sum of the odd terms is just the difference between the sum over all numbers and the sum over
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the evens, or :
2 2

o 1 o 1 o 1 a T
 >——=X — = ¥ — = — - — =— aswe found before.
n=1 n2 even p? odd 2 6 24 8

Finally, direct verification with Mathematica :
sum[1/n?, {n, 1, o, 2}]

2

8

6. You are familiar with Fibonacci numbers (fib[n]). Let's define a similar set of numbers, the so
called Loyola U numbers which have the properties :

lu[0]=2

lu[l]=1

lu[n] = lu[n - 1] + lu[n - 2]

(Note that the lu numbers start at n = 0). Write a short Mathematica program to test the conjecture :
lu[n] = fib[n - 1] + fib[n + 1]

for n < 30. If the conjecture is true for a given value of n, your program should output the ratio of
lu[n]/fib[n]. If the conjecture is false for a given value of n, your program should print "The conjec-
ture is false.” Your printout should include both your program and all results. (20 pts for this
question)

Solution :

We will define two functions, lu[n] and f[n] to describe the Loyola and Fibonacci numbers respec-
tively. We will initialize values and describe functions :

Clear[lu, f]
f[1] =1; F[2] =1; lu[0] =2; lu[l] =1;
f[n_] :=Ff[n] = F[n-1] + F[n-2]
Iu[n_] = lu[n] = lu[n-17 + lu[n-2]
(*These definitions allow us to store previously
computed values of lu[n] and f[n] to minimize computing time. =x)
Do[If[lu[n] == F[n-1] + F[n+ 1], Print["For n = ", n, " The value of lu(n)/f(n) =
lu[n] 7/ F[n] // N1, Print["The conjecture is false."]], {n, 2, 30}]
(*We nest an If statement inside a Do loop; the If statement tests to see
if the conjecture is true (make sure you notice that this requires
the use of a double equal sign. Note also the limits of the Do loop;
what would happen (and why would it happen) if you started with n=1?) x)
(» Now execute the program: x)
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2.23596
2.23611
2.23605
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2.23607
2.23607
2.23607
2.23607
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Pretty clearly the conjecture seems reasonable. In fact lu numbers really exist and are known as
Lucas Numbers.



