## INTRODUCTION TO MATRIX OPERATIONS IN MATHEMATICA

We will start by learning how to input a matrix in Mathematica. Below we define a $2 \times 2$ matrix (named matrixA) and print it out in standard matrix form.
$\ln [141]:=$
$\operatorname{matrix} A=\{\{1,1\},\{2,3\}\} ;$
matrixA // MatrixForm
Outl142//Matixixorm=
$\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$
Each row of the matrix is treated as a list of numbers, so each row is bounded by braces (curly brackets). The entire matrix is a list of lists, so the two rows are bounded by braces.

The semi-colon at the end of the first line suppresses output. The second line prints the matrix in standard matrix form.

## Exercises for you:

1) Write the Mathematica code that will produce the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

2) Write the code that will produce the column vector :

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

## Matrix Multiplication:

Let's define two matrices:
$\ln [146]==$ matrix $C=\{\{1,2,3\},\{4,5,7\},\{9,8,5\}\}$;
matrixD $=\{\{1,2\},\{-2,3\},\{-3,4\}\} ;$
We can multiply these matrices via:
|n[148]]= matrixC.matrixD // MatrixForm
Out[148]//MatrixForm= $\left(\begin{array}{ll}-12 & 20 \\ -27 & 51 \\ -22 & 62\end{array}\right)$
where the symbol between the matrices is simply a period.
The inverse of a matrix satisfies the relationship:

$$
\mathrm{AA}^{-1}=\mathrm{I}
$$

where I is the identity matrix, the matrix where all diagonal elements are 1 , and all other elements are zero, as in :

$$
\begin{aligned}
& \text { IdentityMatrix[3] // MatrixForm } \\
& \qquad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The identity matrix has the same multiplication properties as the number 1 , in other words:

$$
\mathrm{IA}=\mathrm{AI}=\mathrm{A}
$$

Mathematica makes it easy to find the inverse of a matrix. Using matrixA from above:
$\ln [150]$ :=
Out[150]//MatrixForm=

## Inverse[matrixA] // MatrixForm

$$
\left(\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right)
$$

And we verify that this is in fact the inverse of A:
$\ln [149]:=$
Out[149]/MatrixForm=

## matrixA.Inverse[matrixA] // MatrixForm

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

## Exercises for you:

1) Construct a $3 \times 3$ matrix and compute its inverse.
2) Construct a $3 \times 3$ matrix with two identical rows; compute the inverse. What result do you get?
