PHYS 328
HOMEWORK #10-- SOLUTIONS

1. Consider the nth energy level in a hydrogen atom. An electron in this level can have n - 1 values
of angular momentum, and for each value of angular momentum, can have 2 L + 1 values of the
azimuthal quantum number. Thus, the total number of equivalent energy states available to this
electron can be expressed as :

L 1 n-1

=n-1 n— -
Y 2L+ =22L+ X1
L=0 L=0 L=0

Let' s find the value of the last sum; we are simply adding the number one n times (remember, there
are n values from 0 to n - 1), so the last sum contributes a value n to the total number of states.

How can we find the value of the first summation; in other words, how do we sum L from O ton -
1? You may know that it is well known that the sum of the first k integers is k (k + 1)/2, but let me
try to motivate that. Suppose you have integers 1 through k. You can sum them by grouping them
inpairs: (1+Kk)+(2+(k-1))+(3+(k-2))+... you can see that the sum of each group is k + 1,
and that there are k/2 such pairings, so that the sum of all the integers is (k + 1)xk/2, or k (k + 1)/2.
(If there are an odd number of integers, the analysis varies a bit but you get the same result).

Thus the value of the first sum is 2 (n-1) n/2 = n(n-1); when we add this to n we get:
total number of energy levels = n? —n+n = n?

You may remember from chemistry that the total number of electrons in an energy level is 2 n?; this
takes into account that two electrons of different spin orientations may have the same n, I, m
quantum numbers.

2. Given that :

dx 1 X
= — arctan ‘— |
x2+a2 a a

we can easily show the definite integral :
f dx Vg
0 x2+a2 2a

Now, if we differentiate both sides with respect to a we get :

djw dx d(n)
daJo x2+a2 dal\2a
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The derivative on the right easily yields :
-7

2 a?

df dx jwd(dX) jw—Zadx
daJo x2+a2 Jo da\x2+a2) Jo (x2+a2)2

These two expressions must be equal, so :

f —2adx -7 jw dx T
= = =
0 (x%+ .312)2 2a° 0 (x*+ a2)2 4a°

Repeating the process we get :

On the left, we get :

433

4%

d dx d ( b1 ) 3
da 0 (X2+a2)2 B da

The derivative on the left becomes :

d dx r d dx fw 2-2a d
—_— _— = _— = _ X
daJo (x21a2 Jo dal(x24a?) 0 (x2+a?)
Equating the two expressions :
2-2a 3r dx 3r
f—— X = -—— = f =
N P a2)3 43 0 (x2+ a2)3 16a°

What does Mathematica - bot think?

Integrate[l/ (X2 +a”2) "3, {X, 0, o}, Assumptions - Re[a] > 0]

3

16 a®
Efficient, sure, but lacking in the panache of our solution.

3. In the high temperature limit, the equipartition theorem tells us that the average energy of N
oscillators is f/2 N k T. For an Einstein oscillator, f = 2 so that the average energy of the ensemble
is N k T. Therefore, the heat capacity is

= Nk

Q_|Q_
—lm
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and using the result in the text for the standard deviation of the energy :

og = kKTVC/k = kTVNk/k = kTVN

The fractional fluctuation in energy is found by dividing the standard deviation by the energy :

kTVN 1

e NKT VR

We have seen previously in the class how 1/\/ N is a good measure of relative fluctuation around

OE

the mean. For large systems, i.e., Avogadro sized, 1/\/ N is a tiny number, indicating that any
fluctuations around the mean are so small as to be unmeasurable.

4. We are asked to find an expression for the average energy of a system where the energy is
linearly dependent on some coordinate, i.e.,

E=clq

where ¢ is some constant. Following the procedure outlined in class, we begin by computing the
partition function :

7 = Sepoldl = L g o sel Aq
q Aq

Allowing Aq to approach zero, we can turn the sum into an integral; making use of the symmetry of
| q | we can write :

1 1 2 (-1 2
Z = — e_,BC|Q| dq = — .Z‘Fe_ﬂCq dq = — | — (0—1) =
AQ J-oo Ag Jo Ag\Bc BcAg

Having an analytical expression for Z, we can find the average energy from :

~106Z _ﬁch[ 2 )(;1):&:“
) B

Z 0B 2

CAQ

5. We grind and find using :
Vims = V3kT/m
Vimax = V2KT/m
V=V8KkT/(xm)

Substituting values, we have :
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Clear[k, temp, mass]

k=1.38x10"-23; temp = 300; mass = 32x1.67 x 10"-27;

factor = Sqrt[k temp / mass] ;

Print["The rms speed = ', Sqrt[3] factor, " m/s"]
Print["The most probable speed = ', Sqrt[2] factor, " m/s"]
Print["The average speed = ", Sqrt[8 / n] factor, " m/s"]

The rms speed = 482.089 m/s
The most probable speed = 393.624 m/s

The average speed = 444.158 m/s

6. Following the treatment in the text, we find the most probable velocity of a nitrogen molecule at
this temperature :

Vi = V2KT/m = /2 -1.38 2 J/K - 1000K /(28 - 1.67 x 102" kg) = 768m/s

The required speed for escape, 11, 000 m/s is 14.3 times this, so we can use text eq. 6.55 with Xmin =
14.3 to compute:

4 by
P(V> Vo) =— rx e~ dx
o Jas
Integrating numerically gives :

(4 /Sqrt[n]) NIntegrate[X"2 EXp[-X"2], {X, 14.3, »}]

2.51172x 10788

Which is really small. Realizing that the lifetime of the Earth is approx. 4.5 billion years (or
10%7secs), it is highly unlikely that the Earth will lose much nitrogen over geological history.
However, for hydrogen and helium, the masses are much smaller and:

so that Xmin = 11,000/2874 = 3.83 and:

4 2
P(V>Vee) = — F x% e dx
Vo J3s83

Print["The probability of H, escape = ",
(4/Sqgrt[n]) NIntegrate[X"2 EXp[-X"2], {X, 3.83, »}]1]

The probability of H, escape = 1.9017 x10°°

While a small number, we should not be surprised that over the lifetime of the Earth, hydrogen
molecules have essentially all escaped, so that there is no free H left in the Earth' s atmosphere. A
similar result will follow for Helium which is only twice as massive as hydrogen molecules (where

Xmin Will be V2 times larger for He than H,
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Print["The probability of He escape = ",
(4 /Sqgrt[n]) NIntegrate[Xx"2 EXp[-X"2], {X, Sqrt[2] 3.83, »}]]

The probability of He escape = 1.12757 x 10°%?

Since the moon and Earth are roughly the same distance from the sun, we should expect the same
temperatures in the planet' s exospheres. However, on the moon the escape velocity is much lower
(2400 m/s), so the value of Xxmin for nitrogen on the moon is 2400/768 = 3.12, leading to a
probability of exceeding the escape velocity of:

(4 /Sqrt[nx]) NIntegrate[x"2 EXp[-X"2], {X, 3.12, x}]

0.000218681

or 2.2 -107%, suggesting a high probability of escape, consistent with the observation that the moon
has no atmosphere today.



