
PHYS 328

HOMEWORK #10-- SOLUTIONS
1.  Consider the nth energy level in a hydrogen atom.  An electron in this level can have n - 1 values
of angular momentum, and for each value of angular momentum, can have 2 L + 1 values of the
azimuthal quantum number.  Thus, the total number of equivalent energy states available to this
electron can be expressed as :
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Let' s find the value of the last sum; we are simply adding the number one n times (remember, there
are n values from 0 to n - 1), so the last sum contributes a value n to the total number of states. 

 How can we find the value of the first summation; in other words, how do we  sum L from 0 to n -
1?  You may know that it is well known that the sum of the first k integers is k (k + 1)/2, but let me
try to motivate that.  Suppose you have integers 1 through k.  You can  sum them by grouping them
in pairs :  (1 + k) + (2 + (k - 1)) + (3 + (k - 2)) + ... you can see that the sum of each group is k + 1,
and that there are k/2 such pairings, so that the sum of all the integers is (k + 1)äk/2, or k (k + 1)/2.
(If there are an odd number of integers, the analysis varies a bit but you get the same result).  
  
Thus the value of the first sum is 2 (n-1) n/2 = n(n-1); when we add this to n we get:

total number of energy levels = n2 - n+ n = n2

You may remember from chemistry that the total number of electrons in an energy level is 2 n2; this
takes  into  account  that  two electrons  of  different  spin  orientations  may have  the  same n,  l,  m
quantum numbers.

2.  Given that :
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we can easily show the definite integral :


0

¶ dx

x2 + a2
=

p

2 a

Now, if we differentiate both sides with respect to a we get :
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The derivative on the right easily yields :
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On the left, we get :
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These two expressions must be equal, so :


0

¶ -2 a dx

x2 + a22
=

-p

2 a2
fl 

0

¶ dx

x2 + a22
=

p

4 a3

Repeating the process we get :
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The derivative on the left becomes :
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Equating the two expressions :
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What does Mathematica - bot think?
Integrate1  x^2  a^2^3, x, 0, , Assumptions  Rea  0

3 

16 a5

Efficient, sure, but lacking in the panache of our solution.
  

3. In the high temperature limit, the equipartition theorem tells us that the average energy of N
oscillators is f/2 N k T.  For an Einstein oscillator, f = 2 so that the average energy of the ensemble
is N k T.  Therefore, the heat capacity is

C =
dE

dT
= N k

2   phys328-2012hw10s.nb



and using the result in the text for the standard deviation of the energy :

sE = k T C  k = k T N k  k = k T N

The fractional fluctuation in energy is found by dividing the standard deviation by the energy :
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We have seen previously in the class how 1  N is a good measure of relative fluctuation around

the mean.  For large systems, i.e., Avogadro sized, 1  N  is a tiny number, indicating that any

fluctuations around the mean are so small as to be unmeasurable.

4.  We are asked to find an expression for the average energy of a system where the energy is
linearly dependent on some coordinate, i.e.,

E = c q

where c is some constant.  Following the procedure outlined in class, we begin by computing the
partition function :
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Allowing Dq to approach zero, we can turn the sum into an integral; making use of the symmetry of
| q | we can write :
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Having an analytical expression for Z, we can find the average energy from :
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5.  We grind and find using :

vrms = 3 k T  m

vmax = 2 k T  m

v = 8 k T  pm
Substituting values, we have :
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Cleark, temp, mass
k  1.38  10^23; temp  300; mass  32  1.67  10^27;

factor  Sqrtk temp  mass;

Print"The rms speed  ", Sqrt3 factor, " ms"
Print"The most probable speed  ", Sqrt2 factor, " ms"
Print"The average speed  ", Sqrt8   factor, " ms"

The rms speed  482.089 ms

The most probable speed  393.624 ms

The average speed  444.158 ms

6.  Following the treatment in the text, we find the most probable velocity of a nitrogen molecule at
this temperature :

vmax = 2 k T  m = 2 ÿ 1.38 -23 J  K ÿ 1000 K  28 ÿ 1.67 μ 10-27 kg = 768 m  s

The required speed for escape, 11, 000 m/s is 14.3 times this, so we can use text eq. 6.55 with xmin =
14.3 to compute:

P v > vexc = 4

p


14.3

¶

x2 e-x2
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Integrating numerically gives :
4  Sqrt NIntegratex^2 Expx^2, x, 14.3, 

2.51172  1088

Which  is  really  small.  Realizing  that  the  lifetime of  the  Earth  is  approx.  4.5  billion  years  (or
1017secs),  it  is  highly  unlikely  that  the  Earth  will  lose  much  nitrogen  over  geological  history.
However, for hydrogen and helium, the masses are much smaller and:

vmax H2 = 2874 m  s

so that xmin = 11,000/2874 = 3.83 and:

P v > vesc = 4

p


3.83

¶

x2 e-x2
dx

Print"The probability of H2 escape  ",

4  Sqrt NIntegratex^2 Expx^2, x, 3.83, 

The probability of H2 escape  1.9017  106

While a small number, we should not be surprised that over the lifetime of the Earth, hydrogen
molecules have essentially all escaped, so that there is no free H left in the Earth' s atmosphere.  A
similar result will follow for Helium which is only twice as massive as hydrogen molecules (where

xmin will be 2  times larger for He than H2 
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Print"The probability of He escape  ",

4  Sqrt NIntegratex^2 Expx^2, x, Sqrt2 3.83, 

The probability of He escape  1.12757  1012

Since the moon and Earth are roughly the same distance from the sun, we should expect the same
temperatures in the planet' s exospheres.  However, on the moon the escape velocity is much lower
(2400  m/s),  so  the  value  of  xmin  for  nitrogen  on  the  moon  is  2400/768  =  3.12,  leading  to  a
probability of exceeding the escape velocity of:
4  Sqrt NIntegratex^2 Expx^2, x, 3.12, 

0.000218681

or 2.2 ·10-4, suggesting a high probability of escape, consistent with the observation that the moon
has no atmosphere today.
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