
PHYS 328

HOMEWORK #11
Due : Tuesday, 4 Dec. 2012

1.  Verify that the chemical potential used in the hemoglogibin example on p. 259 of the text is in
fact approximately - 0.6 eV.  You will need to review the results of section 6.2 to calculate the value
of Zint.  State expliclitly all values/approximations you are using.

Solution :  We need to determine numerical values for each of the terms in eq. 7.9 from the text :

m = - k T ln
V Z int

N vQ

For k we use the known value of the Boltzmann constant; T for the human body is 310 K, the
quantum volume, vQ is given by:

vQ =
h

2 pm k T

3

We know the values of h (Planck' s constant), k (Boltzmann' s constant), T (temperature), and m is
the mass of an oxygen molecule (32 times the mass of a proton).  Thus, we can easily compute the
value of the quantum value.  (In question 2 we need to find the temperature dependence of m; note
that the quantum volume appears in the denominator of the ln so contributes a term of ln T32 to the
chemical potential.

We are not given direct information regarding N or V, but we know that oxygen comprises approxi-
mately 20% of the atmosphere, so setting the partial pressure of oxygen to 0.2 atm is reasonable.
We can use the ideal gas law to obtain an expression for the ratio V/N:    

P V = N k T fl
V

N
=

k T

P

Finally, we need to compute Zint.  The internal partition function sums over all rotational and vibra-
tional states; as we studied in Chapter 1, the vibrational modes of diatomic molecules are frozen out
at room temperatures (and body temp is close enough so we expect the vibrational modes to be
frozen out), so Zint is the same as Zrot.  Section 6.2 in the text (pp. 234-236) show you how to deter-
mine the rotational partition function when k T >> e  (where e  is  a  constant  determined by  the
moment of inertia of the molecule.  For a homonuclear diatomic molecule, 

Zrot º
k T

2 e



As a quick aside, we have all the information we need to answer question 2.  The V/N term is propor-
tional to T, 1  vQ  is proportional to T32, and  Zrot is proportional to T.  It is now easy to combine

these to determine the dependence of m on T.

To complete our calculation, we need to look up, determine, or estimate the value of e for O2.  If
you look through the book, you will see that e(CO) = 0.00024eV (p. 235 and problem 6.23 on p.
236), so you could assume the that eO2) might not be too different from this.  You could try to
compute e from basic principles, using the results of section A.4.  This section shows that the energy
of an allowed rotational level is 

Ej =
j  j+ 1 Ñ2

2 I

where j is the quantum number of the rotational level, Ñ is h/2 p, and I is the moment of inertia of
the molecule. Compare this expression with eq. 6.29 and recognize that: given by :

e =
Ñ2

2 I

The moment of inertia of a diatmoic molecule is given by :

I = m re
2

where m (in this equation) is the reduced mass of the molecule and re  is the equilibrium distance
between the two oxygen atoms.  (You may recall from classical mechanics that the reduced mass is:

mreduced mass =
m1 m2

m1 +m2

where m1, m2 represent the masses of the atoms.

In the case of O2, m1 = m2 so that mO2  = 8 a.m.u = 8 * mass of a proton. The equilibrium distance for

O2  can be looked up in various references (I used the classic “Spectra of Diatomic Molecules by
Herzberg),  which lists re  for the ground state of oxygen as 1.21 * 10-10m.  Combining all these
values into a short Mathematica program:

In[13]:= Clearh, k, temp, moment, reducedmass, m, mass, mproton, vq, zint, , p, re
h  6.62  10^34; k  1.38  10^23; temp  310; mproton  1.67  10^27;

p  0.2  1.01  10^5; re  1.21  10^10; mass  32;

vq  h  Sqrt2  mass mproton k temp^3;

moment  8 mproton re^2;

  h  2 ^2  2 moment;

zint  k temp  2 ;

chempotential   k temp Logk temp  p zint  vq  1.6  10^19;

Print"the value of the chemical potential in eV is:  ", chempotential, " eV"
the value of the chemical potential in eV is:  0.583425 eV

Which is close enough to -0.6eV for government work.
  

2.  In eq. 7.10 in the text, identify all terms that have a temperature dependence and then determine
the temperature dependence of the chemical potential.  Does this dependence make sense given
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what you know about chemical potential?  Explain your reasoning. 
  

Solution :  Using the results of the problem above, and omitting all constants and factors that have
no T dependence, we can write :

m ∂ -T ln T ÿT ÿT32 = - T ln T72

3.  Text problem 7.8

Solution :  a) We start with the definition of the partition function :

Z = S e- b Es

where b = 1/k T and E represents the energy of the sth state; in this case, we are told that s=10 and
that Es = 0 for each of the 10 states.  Thus, our partition function is simply:

Z = S
s=1

10
e-b 0 = S

s=1

10
1 = 10

b)  If there are two distinguishable particles, the total partition function of the system is :

Ztotal = Z1 ÿZ2 = 10 ÿ 10 = 100

c) If there are two bosons, we know that we can either zero, one or two bosons in one energy state.
There are 10 ways of arranging 2 bosons into ten states (2 bosons in the first state, or 2 bosons in the
second state ...).  There are 45 ways of arranging 2 bosons into 10 states with only one boson per
state (there are 10 choices for the energy state of the first boson, and 9 choices for the second state).
Thus, the total number of states available is 55.  Since the energy of each state is zero, the partition
function is also equal to 55.  

d) If there are two fermions, there are no states with two fermions in the same energy level; we can
not have more than one fermion per energy level, and as shown in part c), there are 45 ways of
arranging two particles in ten levels.  Again, since the energy of the states is zero, the partition
function equals 45.

e) We have :

Ztotal =
1

N!
Z1

N =
1

2!
102 = 50

(midway between the values for fermions and bosons).

f)  There are 100 system states for the case two distinguishable particles in 10 states; of these 100
ways, 10 of them (2 particles in level 1, 2 particles in level 2 ...) include both particles in the same
state.  Therefore, the probability of finding two distinguishable particles in the same single particle
state is 10/100 = 1/10.

For bosons, we computed a total of 55 system states, of which 10 have both particles in the same
particle state, therefore the probability of finding both particles in the same single particle state is
10/55.
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Two fermions can never exist in the same particle state, so the probability of finding two fermions
in the same state is zero.

4.  Text problem 7.9

Solution  :   Not  having cleared out  our  data  from question 1  allows us  to  adjust  the  values  of
temperature and molecular mass for this problem and compute simply :

mass  28; temp  300;

vq  h  Sqrt2  mass mproton k temp^3;

Print"The quantum volume for a nitrogen molecule  ", vq, " m3"
The quantum volume for a nitrogen molecule  6.83899  1033 m3

Boltzmann statistics are valid as long as the volume per molecule, V/N, is much greater than the
quantum volume.  At room temperature, we know (and you might recall from high school chem)
that one mole of a gas at STP occupies a volume of 22.4 L.  This is equivalent to a volume of 2.24
10-2 m3, so for an Avogadro number of molecules, we have:

V

N
=

2.24 μ 10-2 m3

6.02 μ 1023 molecules
~ 3 μ 10-26 m3  molecule

This is a tiny number, but still  almost 7 orders of magnitude greater than the quantum volume, so
the use of Boltzmann statistics clearly holds.  To find the temperature at which quantum statistics
must be used, we note that the temperature has to decrease to cause the value of the quantum vol-
ume to increase by a factor of approximately 5*106.  Since vQ ~ T-32, the temperature would have

to decrease by a factor of about 30,000 (since 30, 00032 ~ 5*106).  This means the new temperature
would be approximately 300K/30,000 ~ 0.01K.  This shows that Boltzmann’s statistics work fine
for the range of temperatures you will almost always encounter ideal gases.  Alternately, you could
set vQ to 3 * 10-26 m3 and solve for T, but that would be boring.

5. Text problem 7.11

Solution : For fermions, the Fermi - Dirac distribution tells us the probability of finding a particle in
a single particle state :

nFD =
1

ee-mkT + 1

Thus, all calculations will use this expression; we need not know e and m separately, rather, we only
need to know how e compares to m.  I will set x = e - m, recall that k T at room temperature is approxi-
mately 1/40 eV (more accurately it is 0.026 eV so that 1/k T = 38.46) and solve all parts at once
using a short Mathematica program :
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Clearnfd, x
nfd  1   Exp38.46 x  1 . x  1.0, 0.01, 0.0, 0.01, 1.0

1., 0.594982, 0.5, 0.405018, 1.98168  1017
The output statement lists the answers in the order requested by the text, the probability of a single
particle state being occupied.  Notice that when the energy is less than the chemical potential, the
state is likely to be occupied (and certain to be occupied when the energy is much less than the
chemical  potential).   When  the  energy  exceeds  the  chemical  potential,  the  occupancy  number
decreases, becoming vanishingly small when the energy is much greater than the potential.
  

6.  Text problem 7.13

Solution :  For this problem, we need to use the Bose - Einstein distribution to find the average
occupancy, and recall the definition of probability in quantum statistics to .find the probabilities of
0, 1, 2 or 3 bosons in the single particle state.
  
  First, we find the average occupancy by writing a program (similar to the one used above).  Again,
we only care about the difference between e and m, and I will estimate k T at room temperature as
0.026eV (such that 1/ k T = 38.46 eV).  Therefore, setting x = e - m, the argument of the exponential
in the Bose - Einstein distribution :

nBE =
1

ee-mkT - 1

can be written as 40 x.  The probability of finding exactly n particles in the state is :

P n =
Gibbs factor n

Grand Partition function
=

e-n e-mkT

1  1- e-e-mkT =
e-38.46 n x

1  1- e-38.46 x = e-38.46 xn 1- e-38.46 x

With these two equations, we can solve for occupancy numbers and probabiilties.  In the program
below,  nbe  will  be  the  occupancy  number  (average  number  of  bosons  expected)  per  state,  and
prob[n,z]  will compute the probability of finding exactly n bosons in a particular single particle
state.  The first two lines compute and print the occupancy numbers; nbe[z] is the occupancy num-
ber for bosons as a function of z, a parameter related to energy.  Since we are given four energies to
consider at logarithmic intervals, I index z from 0 to 3; the denominator 10z  converts the index of
the do loop into the correct energy value.

The last two lines compute and print the probability of finding exactly 0, 1, 2 or 3 bosons in each of
the four energy states requested.  Notice that I use a double loop to do all 12 calculations with one
command.
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In[27]:= Clearnbe, z, prob
nbez_ : 1  Exp38.46  10^z  1
DoPrint"The average expected number of bosons when   ",

10^z, " eV  ", nbez, z, 3.0, 0.0, 1
Print" "
probn_, z_ : Exp38.46 n  10^ z 1  Exp38.46  10^ z

DoPrint "If   ", 1  10^z, " eV, then P", n, "  ", probn, z,

z, 3.0, 0.0, 1, n, 0, 3

The average expected number of bosons when   0.001 eV  25.5042

The average expected number of bosons when   0.01 eV  2.13208

The average expected number of bosons when   0.1 eV  0.0218315

The average expected number of bosons when   1. eV  1.98168  1017

Notice how the expected number of bosons per particle state decreases as e exceeds m by greater
amounts.

Below are the output for the probability of finding n bosons per energy state as a function of (e-m).
  
If   0.001 eV, then P0  0.0377298

If   0.001 eV, then P1  0.0363063

If   0.001 eV, then P2  0.0349364

If   0.001 eV, then P3  0.0336183

If   0.01 eV, then P0  0.319277

If   0.01 eV, then P1  0.217339

If   0.01 eV, then P2  0.147948

If   0.01 eV, then P3  0.100711

If   0.1 eV, then P0  0.978635

If   0.1 eV, then P1  0.0209086

If   0.1 eV, then P2  0.000446712

If   0.1 eV, then P3  9.54401  106

If   1. eV, then P0  1.

If   1. eV, then P1  1.98168  1017

If   1. eV, then P2  3.92707  1034

If   1. eV, then P3  7.78221  1051

Notice that the probabilities for (e - m) = 0.001 eV are all very close to 0.03 so that the sum of P (0)
through P (3) is much less than 1.  Why does this make sense for this case? (Think about n  for this
energy.)  Note also for e-m = 1 eV, the probability of finding any bosons in that level is exceedingly
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small at room temperature; the temperature would have to increase significantly to provide suffi-
cient energy to populate this state.
     

7.  Write a short Mathematica program to verify the plot in Fig. 7.6 of the text. Assume that m is
constant (even though it will vary with temp); choose representative values for m as you let e vary
from 0 to values greater than m.  Plot all three graphs (for high, low, and intermediate values of T)
on one set of axes.  Submit your output and your program with your homework.

Solution : We will use the Fermi - Dirac distribution :

nFD =
1

ee-mk T + 1

I will set the chemical potential to about 0.6 eV and let e be a free parameter.  My program is :
Clearnfd, , , k, p
k  1.38  10^23;   10^19;

nfd  1  Exp    10^p k  1;

Plotnfd . p  1, 3, 3.5, , 0, 5  1019, PlotRange  All

5.μ10-20 1.μ10-19 1.5μ10-19 2.μ 10-19

0.2

0.4

0.6

0.8

1.0

Notice that I write the temperature as 10p  and vary the value of p.  I use the Mathematica “slash-
dot” command to allow me to print out three separate values of temperature on the same graph.
When p=1, the temperature is: 101 = 10 K;  p=3 fl T =1000 K and p=3.5 fl T=3160K.  Notice that
all three curves intersect at an occupancy of 0.5 when e = m.
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