
PHYS 328

HOMEWORK #3
Due : 13 Sep. 2012

1.  Text, problem 1.28

Solution :  Let’s assume the water is initially at 20 C (approx room temperature), and that a cup of
water is defined as approx 200-284 ml of liquid.  Let’s choose 250 ml to be around the midpoint of
this range.  We need to calculate how long it will take to heat this water to 100C if our energy input
is 600J/s.  We know that we require 4.2J of energy to raise the temp of 1 g of water by 10C, so the
total energy required to warm this much water to 1000C is:

Energy = 250 g * 4.2 J  g * 100- 200 C = 84, 000 J

If the microwave generates 600 J of energy /sec, the time required is :

time = 84, 000 J  600 J  s = 140 s

Heat describes the flow of energy between a hotter and colder object in contact, a situation that does
not exist in this case.  The energy transfer here is due to microwave radiation, and is an example of
work.
  

2. Text, problem 1.29

Solution :  The trick is that you cannot make any meaningful comments about theamount of heat
added to the system.  We know that the energy of the system increased, but have no information
telling us how much of that internal energy increase was due to heat or due to work (say, someone
picked up the cup and shook it  so  vigorously  that  the temperature increased).   The question is
intended to draw the distinction between heat and work.
 

3. Text, problem 1.34, all parts.  Five pts per part.

Solutions :  For this problem, we will make frequent use of the relations:

PV = N k T Eq. A
Uth =

f

2
N kT =

f

2
PV Eq. B

DU = Q+W Eq. C
W = -  P dV Eq. D



Step A : The volume is fixed and heat is added to increase the pressure. Since the volume is fixed,

the work done is zero. The change in thermal energy is given by :

DUA =
f

2
D PV = f

2
V1 P2 - P1

The first law of thermodynamics tells us that this is also the heat input for step A.
  
Step B :  Here, the gas expands at constant pressure so the work done is negative (since the gas is
doing work on the environment). The amount of work is :

WB = - P2 V2 -V1
The change in thermal energy is :

DUB =
f

2
D PV = f

2
P2 V2 -V1

The first law of thermo (Eq. C) tells us that Q for Step B is :

QB = DU - W =
f

2
P2 V2 -V1 + P2 V2 -V1 = f + 2

2
P2 V2 -V1

Step C :  The work is zero since DV is zero.  Thus, DU = Q, and we find DU from:

DUC = QC =
f

2
D PV = f

2
V2 P1 - P2 = - f

2
V2 P2 - P1

Step D :  Here the pressure is held constant and positive work is done on the gas to compress it.  We
have that:

WD = - P1 V1 -V2 = P1 V2 -V1
DUD =

f

2
D PV = f

2
P1 V1 -V2 = -f

2
P1 V2 -V1

QD = DUD - WD =
-f

2
P1 V2 -V1 - P1 V2 -V1 = -

f + 2

2
P1 V2 -V1

(Notice the sign changes; writing expressions this way will help in the next part when we sum over
the entire cycle.).

For the entire cycle:
To find the values of W, Q and DU for the entire cycle, sum the contributions from the four steps :

Wtotal = 0 - P2 V2 -V1 + 0 + P1 V2 -V1 = P1 - P2 V2 -V1 = - P2 - P1 V2 -V1
DUtotal =

f

2
V1 P2 - P1+ f

2
P2 V2 -V1 - f

2
V2 P2 - P1- f

2
P1 V2 -V1 =

f

2
P2 - P1 V1 -V2 +V2 -V1 = 0
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Qtotal = - W = P2 - P1 V2 -V1

Do these results make sense?  First, we expect that DU for the entire cycle should be zero since we
begin an end at the same values of P and V; by the ideal gas law, T is determined by these values, so
we should have the same value of T at the start and end of the cycle.  Since U depends on T, no
change in T means there is no change in U.
  
  Notice that the work is just the area of the rectangle in the PV diagram.  Since the expansion
(negative work) occurred at a higher pressure than the compression (the positive work), the total
work is negative.  Since DU = 0, Q = - W and we reproduce this as we expect.
   

4. Text, problem 1.35

Solution :  We start with eq. (1.39) :

V Tf 2 = cst

where cst means a constant.  Now, since we want to eliminate T in favor of P, we use the ideal gas
law :

T = P V/N k  = cst* PV.  

These steps are correct since 1/Nk is just another constant, and a constant times a constant is just
another constant.(We will just call all of these cst since we are interested in the functional relation-
ship, and not the value of the constant).Thus :
   

V P V * cstf 2 = cst fl Pf 2 V 2+f

2
 = cst

Exponentiate both sides of the equation to the power of 2/f :

 Pf 2 V 2+f

2
2f

= cst2f fl P V 2+f

f
 = cst a constant raised to a power is still a constant

and setting (f + 2)/f ª g, we have :

PVg = cst

5. Text, problem 1.36, parts a) and c).  Five pts per part.

Solution :  This is a very typical problem dealing with adiabatic compression.  The information
about temperature (room temp) and that air is a mixture of diatomic molecules allows us to conclude
that the number of degrees of freedom for  this system will be five (since diatomic molecules have 3
translational modes, 2 rotational and the vibrational modes are frozen out at room temps).  Using the
equations for adiabatic process we obtain:
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a PVg = constant or P1 V1
g = P2 v2

g

where the subscripts 1 and 2 refer, respectively, to the initial and final states.  We can rewrite this
equation as :

P2

P1

=
V1

V2

g

Since f = 5, g = (5 + 2) 5 = 7/5.  We are told that the final pressure is 7 times atmospheric pressure,
so the ratio on the left is 7 and we have :

7 =
V1

V2

75
fl

V1

V2

= 757 = 4.01 fl
V2

v1

= 0.25

or that the final volume is 0.25 L (since the initial volume was 1 L).

c)  To find the final temperature, we make use of the equation :

V2 T2
f 2 = V1 T1

f 2

Substituting values :

0.25 L T2
52 = 1 L 300 k52 or T2 = 522 K

6. Text, problem 1.40 both parts.  Ten points per part.

Solutions:

a) In this problem, we will make use of the basic relations we have learned about thermodynamics,
equipartition, and ideal gases. In adiabatic expansion, Q = 0 so we can write :

DU = W

In this case, the work is due to expansion, so we have :

dU = - P dV

Appealing to the equipartition theorem, we write :

U =
f

2
N k T =

f

2
PV

Taking differentials :

dU =
f

2
N k dT =

f

2
P dV + V dP fl N k dT = P dV + V dP

But, since we know that dU = - P dV :

N k dT =
- f

2
N k dT + V dP

where we have set - P dV = (f/2) N k dT.  Collecting terms gives us :
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N k dT 1 +
f

2
= V dP

Using the ideal gas law to eliminate V from the right hand side :

N k dT 1+
f

2
=

N k T dP

P

Canceling terms and rearranging :

dT

dP
=

2

2+ f

T

P

b)  We begin by employing the chain rule :

dT

dz
=

dT

dP
ÿ

dP

dz

We know dT/dP from part a), and dP/dz from our past homework set in which we showed that :

P z = P0 e- mmH g zk T

Taking the derivative of this expression for P (z) gives us :

dP

dz
= -

mmH g

k T
P

Using this expression for dP/dz and our answer in a) for dT/dP, and we find our expression for the
dry adiabatic lapse rate:

dT

dz
=

dT

dP
ÿ

dP

dz
=

2

2+ f

T

P
- mmH g

k T
P = -2

2+ f
 mmH g

k


Our expression for dT/dz involves only constants with the values :

f = 5 for a diatomic gas a room temp

m = 29

mH = 1.67 μ 10-27 kg

g = 9.8 m s-2

k = 1.38 μ 10-23 J  K

We can calculate the value of the lapse rate :

dT

dz
=
- 2

7
29 μ 1.67 μ 10-27 * 9.8  1.38 μ 10-23o

K  m = -0.0098 o K  m º -100 K  km

This means that a rising parcel of air will cool at the rate of 10 C  km as long as the parcel does
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not condense form clouds. We consider the case of condensation in question 7 below.

7.  In question 6, you calculated the lapse rate (dT/dz) for unsaturated air (meaning air that has not
condensed).  When water vapor condenses into the liquid phase, 2260 J of energy are released for
each gram of water vapor that condenses.  Predict whether the lapse rate for a parcel of air that has
saturated (formed clouds) will  have a greater,  lesser or equal magnitude than the lapse rate you
calculated for dry (unsaturated air).  Explain your prediction.  

Solution :  As each gram of vapor condenses into liquid, 2260J of energy are released into the rising
parcel of air.  This latent heating represents a source of positive Q for the parcel which partially
offsets the loss of energy due to expansion work.  Thus, the internal energy of the parcel is greater
than if no condensation occurred, and the magnitude of the lapse is decreased.  In practical terms,
saturated parcels have lapse rates in the range of 5 - 8 C/km, depending on how much vapor is in the
parcel.
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