
PHYS 328

HOMEWORK #5
Due : 27 Sept. 2012

1.   Starting with  the  observation that  the  specific  heat  of  water  is  4.2  J/g/C (or  4200 J/kg/C),
determine what fraction of the specific heat derives from quadratic forms of energy and the fraction
due to hydrogen bonding.  There are 12 degrees of freedom in a water molecule.

Solution  :  If  only  quadratic  forms of  energy  contributed to  the  total  energy  of  water,  then the
equipartition theorem suggests that the total energy of water could be expressed as :

U =
1

2
f N k T = 6 N k T since water has 12 degrees of freedom.

Then, the specific heat  of water would be :

C =
dU

dT
= 6 N k.

For one molecule, the specific heat becomes 6 k (where k is Boltzmann' s constant). 

  Now, let' s use the observed value of water' s specific heat to determine the actual value/molecule.
The molecular weight of water is 18 g, so that 1 gram represents 1/18 of a mole or :

6.02 μ 1023 molecules  mole *
1

18
mole = 3.34 μ 1022 molecules

Then the  specific heat per molecule is :

4.2 J

3.3 μ 1022 molecules
=

1.27 μ 10-22 J = 9 k when we write this in terms of the Boltzmann constant.

This last figure represents the actual value of the specific heat per molecule; when assuming only
quadratic forms of energy, we computed a value of 6 k.  Thus, the quadratic forms contribue 2/3 of
the total specific heat, and hydrogen bonding accounts for 1/3 of it.
  

2.  Calculate the number of possible microstates for the cases shown in text problem 2.5, parts a) - e)
inclusive.  2 pts each part.

Solution :  For all parts, we will use :



W N, q = q+N- 1

q
=

q+N- 1!
q! N- 1!

aW 3, 4 = 6!

4! 2!
= 15

bW 3, 5 = 7!

5! 2!
= 21

cW 3, 6 = 8!

6! 2!
= 28

dW 4, 2 = 5!

2! 3!
= 10

eW 4, 3 = 6!

3! 3!
= 20

3.  Without doing any explicit calculations or making any reference to equation 2.9 in the text,
determine the answers for text problem 2.5, parts f) and g). Explain your reasoning.  10 pts for the
question.

Solution :  In part f), there is one atom and the heat can be any integer value.  There is only one
possible microstate, namely, the microstate in which all the energy is in the one atom.

In part g), there is one unit of energy that can be distributed among N atoms.  Since the one unit of
energy could be in any of the atoms, there are N possible microstates available to this system.

4.   Consider a system A with 300 particles and a system B with 200 particles.  The systems share a
total of 100 units of energy.  Write a Mathematica program that reproduces the plot on p. 59 of the
text (you needn’t worry about aesthetics such as shading and axis labels).   
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In[2]:= Clearmicrostatesa, microstatesb, microstates, na, nb, q
na300;nb200;q100;

microstatesaqa_:qana1qana1
microstatesbqa_:qqanb1qqanb1
microstatesqa_:microstatesaqa microstatesbqa
ListPlotTableqa,microstatesqa10^114,qa,q,PlotRangeAll,AxesLabelqa,"Microstates

Out[7]=
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Microstates â 10114

In this program, I defined three functions to find the number of possible microstates for system A
(microstatesa[qa]), system B (microstatesb[qa]), and the total number of microstates for the com-
bined system (microstates[qa]). I wrote each one as a function of the energy in system A (qa), since
the total energy q must equal the sum of qa and qb.  The number of particles are represented by na
and nb.  We can use the program above to find the total number of microstates possible by summing
microstates[qa] from qa = 0 to 100 :
totalstates  Summicrostatesqa, qa, 0, 100  N;

Print
"The total number of microstates available to the combined system  ", totalstates

The total number of microstates available to the combined system  9.26176  10115

and this result agrees the number quoted in the text.  Notice that we would also obtain this result by
directly computing the total number of microstates for a system of 500 particles with 100 units of
energy:
500  100  1  100 500  1  N

9.26176  10115

5.  For the system described in problem 4 above, write a short Mathematica program to determine
the probability of finding all the energy in A; what is the probability of finding all the energy in B?
Your graph above should show that the maximum probability occurs when qA  = 60.  What is the

probability of finding 60 units in system A?  (Use Mathematica programs to solve all parts to the
question; clearly define all the variables and functions you use in your programs).

Solution :  The probability of finding a macrostate with qa units of energy is :

probability of macrostate with qa units of energy =
W qa
W all

phys328-2012hw5s.nb  3



where W (qa) is the number of ways we can get qa units of energy in system A, and W (all) is the
total number of microstates available to the system (this is the number computed as totalstates in the
problem above).  Using our definitions from the previous problem, we have :
Clearprob
probqa_ : microstatesqa  totalstates

The probability of finding all 100 units in system A is :
Print"The probability of finding 100 units of energy in A  ", prob100  N

The probability of finding 100 units of energy in A  1.81541  1020

And the probabilities for finding all the energy in B and 60 units in A :
Print"The probability of finding 100 units of energy in B  ", prob0  N
Print"The probability of finding 60 units of energy in A  ", prob60  N

The probability of finding 100 units of energy in B  2.99313  1035

The probability of finding 60 units of energy in A  0.0741361

6.  Problem 2.16 from the text.  Use Stirling' s approximation even if your calculator can handle the
factorials.  You may use a calculator or Mathematica to check your results, but show your work and
compute your values using Stirling' s approximation.  10 pts for part a), 5 pts for part b).

Solutions :
   
   a) If we flip a coin 1000 times, then there are a total of 21000 possible outcomes (microstates).  The
number of ways of getting exactly 500 heads is:

W 500 = 1000!

500! μ 500!

so the probabiility of getting exactly 500 heads is :

prob 500 = W 500
21000

Let' s use Stirling' s approximation to find the value of W (500).  Since we are dealing with a large,
but not very large number, we use Stirling in the form :

N! = NN e-N 2 pN

Applying this to  (500) we get :

W 500 = 1000!

500! μ 500!
º

10001000 e-1000 2 p ÿ 1000

5005002 e-5002 2 p ÿ 500 2 p ÿ 500
=
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10001000 e-1000

5001000 e-1000 2 p ÿ 250
=

21000

2 p ÿ 250

The above expression is W (500), so the probability of obtaining exactly 500 heads is :

prob 500 = 21000

2 p ÿ 250
 21000 =

1

500 p
= 0.0252 = 2.52%

b) The probability of obtaining exactly 600 heads is :

prob 600 =
W 600

21000
=

1000!

600! 400!
2-1000 =

10001000 e-1000 2 p ÿ 1000

600600 e-600 400400 e-400 2 p ÿ 600 2 p ÿ 400
2-1000

Notice  that  the  exponential  terms  cancel;  we  can  further  write  10001000 = 1000600+400 =
1000600 1000400.  Similarly, 21000= 2600 2400,  These expressions allow us to write prob(600) as:

prob 600 = 5

6

600 5

4

400 5

2400 p
= 4.63 μ 10-11

We compare the result obtained from Stirling' s Approximation with a direct calculation and see that
Stirling’s approximation works quite well for N ~ 1000 :
1000  600 400  2^1000  N

Out[1]= 4.63391  1011

7.  Text problem 2.17

Solution :  Start with eq.2.18 from page 63 of the text :

lnW = q+N ln q+N - q ln q - N ln N

In the low temperature limit, q << N, so we rewrite the ln (q + N) term as :

ln q+N = lnN 1+ q

N
 = ln N + ln 1+ q

N
 º ln N+

q

N

The last step uses the approximation you learned in your studies of Taylor series :  ln (1 + x) º x
for |x| <<1. Substitute this into text eq. 2-18:

lnW = q+N ln N+
q

N
- q ln q - N ln N = q ln N +

q2

N
+ q - q ln q

Since q << N, we can ignore the q2 N  term and get:

lnW = q ln
N

q
+ q
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Exponentiate both sides :

W = eln Nqq + q = '
N

q

q

eq =
e N

q

q

Notice that this result has the same form of eq. 2.21 in the text with q and N interchanged.
  

8.  Text problem 2.18

Solution :  In this problem, we are asked to verify an expression for the multiplicity of a system of
oscillators.  Since this is the general case, we cannot make any assumptions about the relative sizes
of q and N, although we do assume they are both large enough to use Stirling' s approximation.  We
begin with the general expression for the multiplicity of an Einstein solid of N oscillators with a
total of q units of energy :

W N, q = q+N- 1

q
=

q+N- 1!
q! N- 1!

Now, we follow the hint in the text and show that :

q+N! = q+N q+N- 1! fl q+N- 1! = q+N!  q+N

Similarly, we can write (N - 1)! = N!/N.  With these results, the multiplicity of the system becomes :

q+N!N

q+N q!N!

Expressing the factorials using Stirling' s approximation :

q+Nq+N e-q+N 2 p q+N N

q+N qq e-q 2 p q NN e-N 2 pN
=

q+Nq

qq
ÿ
q+NN

NN
ÿ

N

q+N
ÿ

2 p q+N
2 p q 2 pN

Notice that the exponential terms cancel.  A little bit more algebra brings us to the desired form :

q+N

q

q q+N

N

N

ÿ
1

2 p q q+N  N
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