
PHYS 301

HOMEWORK #7
Solutions

1.  Starting with the text' s equations 3.28 and 3.29, complete the algebraic steps to derive equations
3.30 and 3.31

Solution :  We begin with :

1
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∑U
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∑S
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-1

2 mB

∑S

∑N+

where we made use of the definition U = mB (N - 2 N +).  (Please note that I am using "+" rather
than the up arrow for ease of typing).  Now, eq. 3.28 expresses S in terms of N + :

S

k
= N ln N -N+ ln N+ - N-N+ ln N-N+

Taking the derivative we get :
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We can rewrite the text' s eq. 3.25 as :

N+ =
N

2
-

U

2 mB

Substituting this into our eq. 1, gives us :

1

T
=

k

2 mB
ln

N- U  mB

N+U  mB

and this is eq. 3.30.  Now we solve for U to derive eq. 3.31 :

ln
N- U  mB

N+U  mB
=

2 mB

k T
ª Z

I define this parameter Z for ease of typing.  Exponentiating, we get :



N- U  mB

N+U  mB
= eZ

Multiplying through and collecting U terms gives :

U

mB
eZ + 1 = N 1- eZ fl U = mB N

1- eZ
1+ eZ

which is the intermediate expression in eq. 3.31.  To turn this into hyperbolic functions, multiply
numerator and denominator by Exp[-Z/2], so we get :

U = mB N e-Z2 - eZ2  e-Z2 + eZ2
We can  see  that  the  numerator  is  -  2  sinh  (Z/2)  and  the  denominator  is  2  cosh  (Z/2),  so  our
expression becomes :

U = - mB N sinh Z  2  cosh Z  2 = - mB N tanh Z  2 = - mB N tanh mB  k T.

Which is the final expression desired.

2.  In the limit that mB/k T << 1, use appropriate series expansions to show that eq. 3.35 follows
from eq. 3.32.

Solution :  In the high temperature limit, the argument of the tanh function becomes small, and we
can write expand the exponentials as :

M = N m tanh mB  k T = N m
eX - e-X
eX + e-X where X = mB  k T

When X << 1, we can expand :

M = N m 1+X - 1-X  1+X+ 1-X = 2 N mX

2
= N mX = N m2  k T

3.  Problem 3.25 parts a) - d).  10 pts for b), 5 pts for each of a), c), d).

Solutions :  a)  We know that S = k ln W, so we have :

S = k ln  q+N

q

q q+N

N

N

 = k q ln
q+N

q
+ k N ln

q+N

N

b) We find the temperature as a function of U using :

1

T
=

∑S

∑U

We can simplify this a bit knowing that U  = q e and using the chain rule :

1

T
=
∑S

∑U
=
∑S

∑q
ÿ
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∑U
=

1

e

∑S

∑q
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the last step resulting from the fact that dU/dq = e.  We now use the expression in part a) and take
the derivative of S with respect to q :
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k
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∑
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k
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
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e
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Solving in terms of T gives us :

T =
e

k ln 1+N  q =
e

k ln 1+Ne  U
Exponentiate both sides and solve for U :

U =
N e

eekT - 1

c) To find the heat capacity, we find dU/dT :

C =
d

dT

N e

eek T - 1
=

-1 N e

eek T - 12

d

dT
eek T = -1 N e eek T

eek T - 12

-e

k T2
=
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k T2

eek T

eek T - 12

d)  When T is large, the argument of the exponential is small, and we can expand the exponent in
the denominator in a Taylor series keeping only the first order terms :

C =
N e2

k T2

1

1+ e  k T- 1

2

=
N e2

k T2
ÿ

1

e  k T2
= N k

As T Ø ¶, we expect all the possible degrees of freedom to be unfrozen; recalling that this deriva-
tion was done for an Einstein oscillator, and that each Einstein oscillator has 2 degrees of freedom,
this is exactly the result we expect from the equipartition theorem which predicts that U = (f/2) N k
T.  For f = 2, we have that C = dU/dT = N k.
    

4. Problem 3.32 (all parts; each part 5 pts).

Solutions :  a)  This is the simplest of all work problems :  Work = force x displacement.

W = 2000 N ÿ 10-3 m = 2 J

b)  Remember that  heat  is  the  flow of  energy  between two objects  of  different  temperatures in
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context.  This situation does not exist, so there is no heat flow in this scenario.

c) Thus, the internal energy of the gas increases by the work done, or by 2 J.  Since the work is done
on the gas, the internal energy increases (and the temperature would increase).

d) The thermodynamic identity gives us :

T ds = dU + P d V fl dS =
1

T
dU +

P

T
dV

We know T = 300 K, dU = 2 J, P = 105 N  m2;

so we have to find dV. We are given the distance the piston moves and the area of the piston,

so we can compute easily :

dV = -10-3 m ÿ 0.01 m2 = - 10-5 m3.

Since the volume is decreasing, be sure to use the proper sign.  Substituting all relevant values, we
get :

dS =
1

300 K
2 J + 10-5 N  m2 -10-5 m3 = 1

300
J  K = 0.0033 J  K

5. Problem 3.36 both parts. 5 pts a), 10 pts b).
 
 a) We use the expression for W from problem 3 and compute the entropy:

S = k lnW = k ln  q+N

q

q q+N

N

N

 = k q ln
q+N

q
+ k N ln

q+N

N

To find the chemical potential, we take :

m = - T
∑S

∑N
= - Tk ∑

∑N
q ln

q+N

q
+ k N ln

q+N

N


m = - k T q

q+N
+

N

q+N
+ ln q+N - ln N -

N

N
 = - k Tln q+N

N


b)  If N >> q, we can write the ln that appears in the expression for chemical potential as :

ln
q+N

N
= ln 1+ q

N
 º q

N
using the approximation that ln 1+ x º for x small.

In the limit where N >> q, we see that the increase in entropy goes roughly as q/N, a very small
number.  Does this make sense?  Remember that entropy is a measure of the number of accessible
states to a system.  The change in entropy is thus the change in number of states, and the chemical
potential is a measure of how the number of states changes as we add particles.  So, consider a very
simple system consisting of 1000 particles sharing 1 unit of energy.  We know that there are only
1000 ways this 1 unit of energy can be distributed among the 1000 particles.  If we add 1 more
particle  then the number of accessible states is 1001, and the entropy has increased slightly, and we

4   phys328-2012hw7s.nb



can approximate ∑S/∑N ~ 1/1000, or, q/N.  Thus the chemical potential should vary roughly as - k T
q/N.  So this result makes sense (although I would not say it is glaringly intuitive).
    
    In the limit where q >> N, the ln in the chemical potential expression approaches the value of ln
(q/N).  Now, suppose we have a system that starts out with 1000 units of energy and only 1 particle.
There is only 1 way to distribute this energy among the particles, i.e., all the energy is in the 1
particle.  But now, if we add a particle, we have 1001 ways of distributing energy between the 2
particles (0 energy in particle A, 1 unit of energy in particle A, 2 units ....usw, usw, usw). Recall that
chemical potential tells you how the entropy changes as the number of particles changes, and we can
see that ∑S/∑N is quite large for our hypothetical system of 1000 units of energy and 1 particle; if
we add just one more particle, the magnitude of ∑S/∑N is large.  Thus, the chemical potential of the
system with q=1000 and N=2 is much more negative than the system where q=1000 and N =1.  
 Since there are many more ways to distribute energy to 2 particles than to 1, the (slightly) denser
system has a greater entropy, and therefore a greater probability to occur.  Again, this makes sense,
but I would not call it intuitively obvious.
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