PHYS 301
HOMEWORK #7

Solutions

1. Starting with the text' s equations 3.28 and 3.29, complete the algebraic steps to derive equations
3.30and 3.31

Solution : We begin with :
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where we made use of the definition U = uB (N - 2 N +). (Please note that | am using "+" rather
than the up arrow for ease of typing). Now, eq. 3.28 expresses S in terms of N + :

S
E = NINN -=N+InN+ = (N=-N+)In(N=-N+)

Taking the derivative we get :
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[NINN =N+InN+ = (N=N+)In(N=N+)]

1 -k N+ (—1)(N=-N+)
—:—[—InN+— - +In(N—N+)]
T 2uB N+ (N-N+)
1 -k -k N-N+ + k N+
— =——[-InN+ -1+1 +In(N=-N+)] = In = n( ) (1)
T 2uB 2uB N + 2uB N - N+
We can rewrite the text' s eq. 3.25as :
N U
N+ = — - ——
2 2uB

Substituting this into our eq. 1, gives us :

1 k | N-U/uB
— = n
T 2uB N+U/uB

and this is eq. 3.30. Now we solve for U to derive eq. 3.31 :
N-U/uB 2uB
In = =Z

N+U/uB kT

I define this parameter Z for ease of typing. Exponentiating, we get :
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N-U/uB .
N+U/uB
Multiplying through and collecting U terms gives :
U (1-¢%)
— (e*+1) = N(1-e*) > U = uBN
1B (1+¢€%)

which is the intermediate expression in eq. 3.31. To turn this into hyperbolic functions, multiply
numerator and denominator by Exp[-Z/2], so we get :

U= u BN (e—Z/Z _ eZ/Z) / (e—Z/Z + eZ/Z)

We can see that the numerator is - 2 sinh (Z/2) and the denominator is 2 cosh (Z/2), so our
expression becomes :

U=-uBNsinh(Z/2)/cosh(Z/2) = — uBNtanh(Z/2) = — uBNtanh(uB/kT).

Which is the final expression desired.

2. In the limit that uB/k T << 1, use appropriate series expansions to show that eq. 3.35 follows
from eq. 3.32.

Solution : In the high temperature limit, the argument of the tanh function becomes small, and we
can write expand the exponentials as :
eX—e X
M = Nutanh(uB/kT) = Nu——— where X = uB/KkT
(eX+e™)
When X << 1, we can expand :

N u X

2
M= Ng[l+X —(1=X)/L+X+(L-X)] = = NuX = Nu2 /KT

3. Problem 3.25 parts a) - d). 10 pts for b), 5 pts for each of a), c), d).
Solutions : a) We know that S =k In , so we have :

S = kln[(q;N]q(qLN)N] - kqln(q;N] + KNIn (qLN)

b) We find the temperature as a function of U using :
1 aS

T o

We can simplify this a bit knowing that U = q € and using the chain rule :
0S dS dq 19S
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the last step resulting from the fact that dU/dq = e. We now use the expression in part a) and take
the derivative of S with respectto q :

1 10S k o
—:——:—8—[qln(q+N)—qInq+NIn(q+N)—NInN]

T €0q €dq
E:l—([ln(q+N)+ -Ing -1+ ]
T € qg+N g+N
E:E[In(q+NJ+(q+NJ_1]:L(In(q+N)
T € q g+N € q
Solving in terms of T gives us :
€ €

T= KIn(L+N/g) KIn(1+Ne/U)
Exponentiate both sides and solve for U :
Ne
ekT —1

c) To find the heat capacity, we find dU/dT :
d Ne -1Ne d ~1NeekT / —¢ Ne  ekT
) e = S
dT k T2

kT2 (e — 1)

eekT _1 (ee/kT _ 1)2 dT (ee/kT _ 1)2

d) When T is large, the argument of the exponential is small, and we can expand the exponent in
the denominator in a Taylor series keeping only the first order terms :

N €2 1 2 N €2 1

kT2 \1+(e/kT)-1 KT2 (e/kT)?
As T — oo, we expect all the possible degrees of freedom to be unfrozen; recalling that this deriva-
tion was done for an Einstein oscillator, and that each Einstein oscillator has 2 degrees of freedom,

this is exactly the result we expect from the equipartition theorem which predicts that U = (f/2) N k
T. For f=2, we have that C = dU/dT = N k.

4. Problem 3.32 (all parts; each part 5 pts).
Solutions : a) This is the simplest of all work problems : Work = force x displacement.
W = 2000N - 103 m =2
b) Remember that heat is the flow of energy between two objects of different temperatures in
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context. This situation does not exist, so there is no heat flow in this scenario.

c) Thus, the internal energy of the gas increases by the work done, or by 2 J. Since the work is done
on the gas, the internal energy increases (and the temperature would increase).

d) The thermodynamic identity gives us :
1 P
Tds =dU + PdV = dS = _—I_dU+?_dV

Weknow T = 300K, dU = 2J, P = 10°N /m?;
so we have to find dV. We are given the distance the piston moves and the area of the piston,
S0 we can compute easily :

dvV = -10%m - 0.01m? = - 10°m®.

Since the volume is decreasing, be sure to use the proper sign. Substituting all relevant values, we
get:

1 1
dS = —— (2J +10°N/m?(-10°m?) = — J/K = 0.0033J/K
3oo+<( " /m ™) 300 f /

5. Problem 3.36 both parts. 5 pts a), 10 pts b).
a) We use the expression for ) from problem 3 and compute the entropy:
+NY4 g+ NN +N +N
S =klnQ = kln[q (q )]:kqln a +kNIn(q—)
q N q N
To find the chemical potential, we take :
0S 0 + N +N
,u:—T(—):—T[k— gin[2 +kNIn(q )]
AN AN q N
N

q
+
g+N qg+N

M=—kT[ +In(q+N)—InN—E]:—kT[|n(qLN)]

b) If N >> q, we can write the In that appears in the expression for chemical potential as :

q+N q q . N
In T =In 1+N zN using the approximation that In (1 + x) ~ for x small.

In the limit where N >> q, we see that the increase in entropy goes roughly as g/N, a very small
number. Does this make sense? Remember that entropy is a measure of the number of accessible
states to a system. The change in entropy is thus the change in number of states, and the chemical
potential is a measure of how the number of states changes as we add particles. So, consider a very
simple system consisting of 1000 particles sharing 1 unit of energy. We know that there are only
1000 ways this 1 unit of energy can be distributed among the 1000 particles. If we add 1 more
particle then the number of accessible states is 1001, and the entropy has increased slightly, and we
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can approximate dS/ON ~ 1/1000, or, g/N. Thus the chemical potential should vary roughly as - k T
g/N. So this result makes sense (although I would not say it is glaringly intuitive).

In the limit where g >> N, the In in the chemical potential expression approaches the value of In
(a/N). Now, suppose we have a system that starts out with 1000 units of energy and only 1 particle.
There is only 1 way to distribute this energy among the particles, i.e., all the energy is in the 1
particle. But now, if we add a particle, we have 1001 ways of distributing energy between the 2
particles (0 energy in particle A, 1 unit of energy in particle A, 2 units ....usw, usw, usw). Recall that
chemical potential tells you how the entropy changes as the number of particles changes, and we can
see that 9S/ON is quite large for our hypothetical system of 1000 units of energy and 1 particle; if
we add just one more particle, the magnitude of dS/ON is large. Thus, the chemical potential of the
system with g=1000 and N=2 is much more negative than the system where q=1000 and N =1.

Since there are many more ways to distribute energy to 2 particles than to 1, the (slightly) denser
system has a greater entropy, and therefore a greater probability to occur. Again, this makes sense,
but I would not call it intuitively obvious.



