1. Consider a heat engine cycle consisting of:

 Step 1: Isothermal expansion at temperature T_h.
 Step 2: Removing heat at constant volume until the temperature reaches T_C.
 Step 3: Isothermal compression at T_C.
 Step 4: Heating the gas at constant volume until the temperature returns to T_h and the cycle renews.

 (The PV diagram for this process should be equivalent to the process described in question 1 of the first hour exam).

 Find the efficiency of this heat engine, and compare its efficiency explicitly to the efficiency of a Carnot engine operating between these two temperatures. Show explicitly that the efficiency of this engine is less than a Carnot engine’s.

2. Why are air conditioning units placed in windows and not the middle of a room?

4. Problem 3.31

5. Problem 5.8