PHYS 328
HOMEWORK #8

Due : 1 Nov. 2012

1. Consider a heat engine cycle consisting of :

Step 1: Isothermal expansion at temperature Ty,

Step 2: Removing heat at constant volume until the temperature reaches Tc.

Step 3: Isothermal compression at Tc.

Step 4: Heating the gas at constant volume until the temperature returns to Ty and the cycle
renews.

(The PV diagram for this process should be equivalent to the process described in question 1 of the

first hour exam).

Find the efficiency of this heat engine, and compare its efficiency explicitly to the efficiency of a
Carnot engine operating between these two temperatures.Show explicitly that the efficiency of this
engine is less than a Carnot engine’s.

Solution : We know that the efficiency of a heat engine can be expressed as :

w

Qn

where W is the total work done in one cycle and Qy, is the heat extracted from the hot reservoir. The
diagram below (painstakingly transported from the internet) will serve as our benchmark for analyz-
ing this problem.
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The power stroke, corresponding to the isothermal expansion of the gas occurs between points 1 and
2 in the diagram above; heat is extracted from the gas between points 2 and 3 until the temperature
of the gas drops until it is infinitesimally above the temperature of the cold reservoir. The gas is
isothermally compressed between points 3 and 4, and is then heated at constant volume until its
temperature is just less than the temperature of the hot reservoir. The area of the curve represents
the total work done by the gas, and the total heat extracted from the hot reservoir is the sum of the Q
values for steps 1 —» 2 and steps 4 — 1.

There is no work done in the constant volume steps, thus the total work is :
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The total heat extracted is :
Qn = Q12 + Qu

In the isothermal expansion, we know that the change in internal energy is zero (since the temp does
not change); thus, the first law of thermo shows that the heat extracted equals the work done :

V,
Q2 = Wiz = NkThIn—
Vi

Recall that our definitions of Q and W used in the efficiency equations mean we care only about
positive quantities. In the constant volume heating, there is no work done, so the heat extracted



phys328-2012hw8s.nb |3

equals the change in internal energy of the process, or :

f
Qu=U;-Uy= ENk(Th—Tc)

We can now compute the efficiency of this type of engine as :

W NK(Th - To) In

e

Qh NKThIn2 + L Nk(Ty - To)
1

The second part of the problem asks you to show that this is less than the efficiency of the Carnot
cycle, and a number of you indicated some difficulty in algebraically equating the two expressions
for efficiency. Suppose we consider the reciprocals of efficiency; we would write the inverse of

efficiency for this engine as :

1 NkThln%jJr—;Nk(Th—Tc) T, f
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e Nk(Th—Tc)In% Th—Te 2|n%
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The first term on the right of the final expression is just 1/(efficiency of a Carnot engine), so we

have :
1 1 f
—_ = + v
e €camot 2 |In =2
Vi

Since the second term is always positive, we have that 1/e < 1/e (Carnot), which implies that e
(Carnot) > e (this engine). QED. This type of engine is known as a Stirling Engine.

2. Why are air conditioning units placed in windows and not the middle of a room?

Solution: An air conditioner has to dump its excess heat (and entropy) somewhere. If it is dumped
inside the room or building, the waste heat will warm the room instead of cooling it. Thus, air
conditioners are mounted in windows to vent excess heat to the outside environment.

3. Problem 4.1.
Solution : We start again with the definition of efficiency :
w
e = —
Qn

The total work done is just the area of the rectangle, which will be :
W = (P, -Py)(Vo-V1) = 2PV, (forthe case where P, = 2P1and V, = 3Vy)

Heat is absorbed in the constant volume pressurization (step A in Fig. 1.10 (b) on p. 23) and in the
expansion phase of the cycle (step B). Refer back to the solutions to homework #3, problem 3, to
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obtain expressions for Q in steps A and B (and recall that f = 5 for a diatomic gas) :
5 7 5 7 33
Qnh = Qa+ Qs = EV1(P2—P1) + 5 Po(V2—-Vy) = 5 P1V1+E (2P1(2Vy) = E P1V1

Therefore, the efficiency of this process is :

To compute the efficiency of a Carnot cycle, we need to know the high and low temperatures in a
cycle. Using the ideal gas law as our guide, the lowest temperature will occur when the product of
PV is the smallest; or :
P1 Vi
N k

TC:

The highest operating temperature occurs when P and V are simultaneously a maximum, so that :
P, Vs 6PV,

Th: =
Nk N k

Thus, the efficiency of a Carnot engine operating between these temperatures is :

6P,V,- PV 5
€carnot = 16Fl’ v S =833 %
1Vl

4. Problem 3.31
Solution : We begin with :

T2 Cp T.(a+bT - cT?) T, c(1 1
AS:f —dT:f dT = aIn(—)+b(T2—T1)+—(———)
T Ty T T 2 T22 T12

Substituting the values given by the problem :
a=1686J/k b =477x1072)/K? ¢ = 854x10°J-K; T, = 500K; T, = 298K

gives us :

Clear[a,b,c,tl,t2,deltaS,cp]

a=16.86;b=0.00477;c=8.54 10"5;t1=298;t2=500;

cpl[temp_]:=a + b temp -c/temp”2

deltaS=Integrate[cp[temp] /temp, {temp,298,500}] ;

Print["The change in entropy from 298K to 500K = ',deltaS, " J/K"]

6.588494390338951" J/K

The change in entropy from 298K to 500K

This is how much the entropy changes between these two temps; since the entropy is 5.74 J/K at
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298 K (see table at back of book), the entropy at 500 K is simply 6.59 J/K + 5.74 J/K = 12.3 J/K

|5

5. Problem 5.8
Solution: Start with the thermodynamic identity from the end of Chapter 3 :
dU = TdS - PdV + udN
I know that U is related to F via :
F=U-TS=dF =dU - TdS - SdT
and that F and G are related by :
G=F+PV =dG =dF +PdV + VdP
Using our expression for dF from equation (2) in equation (3) :

dG =(dU - TdS - SdT) + PdV + VdP
Substituting for dU from equation (1) into eq. (4) :
dG = (TdS — PdV + udN — TdS — SdT)+PdV + VdP = gdN — SdT + VdP

Partial differentiation gives us :

0G 0G 0G
IR I - IR
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The first of these partial derivatives gives us an interesting insight into the meaning of u. If we
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integrate both sides to obtain G = u N, we can think of chemical potential, x, simply as Gibbs' Free

Energy/particle.



