
DERIVING EXPRESSIONS IN THE EDDINGTON 

APPROXIMATION

In our study of stellar atmospheres, we found that the plane - parallel approximation led to many
useful and simplifying expressions.  One of the most important of these is the Eddington approxi-
mation, in which we think of the radiation field as having two components :  a component out-
ward along the z axis that we call Iout  and a component inward that we call Iin.  This simple

notion, coupled with definitions of intensity, flux and radiation pressure, allow us to express the
mean intensity, flux, and radiation pressure in terms of Iout and Iin.

We begin with the definition of mean intensity:
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It is instructive to review the limits of these integrals.  The outer integrals are over the azimuthal
angle f and run from 0 to 2 p.  The inner integrals are over the polar angle, and notice that they
have different limits in the two integrals above.  Because we are approximating the intensity
field with two streams, one incoming and one outgoing, we integrate the outgoing stream over
the upper half hemisphere, which runs from q = 0 to q = p/2.  The incoming stream is integrated
over the lower hemisphere, with limits that you see above.  The term sinq dq df should be famil-
iar to you as the expression for integrating over all angles in spherical polar coordinates. We can
see there is no f dependence of the integrals, so the outer integrals evaluate easily to 2 p.   Evalu-
ating these integrals over q, we get :
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And this is our first major result (corresponding to equation 9.46 in the text).

Next, we find an expression for F in terms of the two intensity streams.  Recall that the definition
of flux is :
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Now, setting I = Iout + Iin and integrating over appropriate limits, we get:
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and this is our second major result (text Eq. 9.47).

Finally, we use the equation for radiation pressure to find an expression relating Prad to Iin and

Iout.  If we integrate over all space, our expression for radiation pressure is:
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Now, setting I = Iin + Iout, our integral becomes:
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for our final major result (text eq. 9.48)
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