
PHYS 380

HOMEWORK #3--SOLUTIONS

For Class Discussion on Sept. 20 and submission on Sept. 22.

1.  a) Show that the gravitational binding energy of a self - gravitating sphere of mass M and
radius R is :

U =
- 3

5

G M2

R

Assume the sphere has a constant density throughout.  (Hint :  Imagine the sphere being con-
structed by bringing in matter from infinity  in a series of infinitesimal spherical shells)

Imagine that the star is constructed by infall of successive spherical shells of thickness dr.  Con-
sider the spherical shell that forms around the sphere of radius r.  This sphere has a mass of
4
3
p r3 r where r is the density of the star.  Now, the mass contained in the spherical shell dm(r),

will just be 4 p r2r dr, and the gravitational potential between the spherical protostar and shell is:

U r = -G m r dm r
r

= -
G 4

3
p r3 r ÿ 4 p r2 r dr

r
=
- 16

3
G p2 r4 r2 dr

We integrate this expression for U (r) to find the total potential binding energy in the star :

U = 
0

R

U r dr =
- 16

15
G p2 R5 r2

Now, we are told the density is constant, so we know that r = M   4
3
p R3.  Substitute this into

our expression for U:

U =
-16

15
G p2 R5 M2

16
9
p2 R6

=
- 3

5

G M2

R

For the earth, U has a value of 2 · 1032J



b) Compare this binding energy to the total energy that could be released from all the nuclear
weapons  in  the  world.   Assume there  are  approximately  10,  000  megatons  (MT) of  nuclear
weapons remaining.  (1 MT = the energy released by the explosion of 1 million tons of trinitrotol-
une (TNT); you may need to so some sleuthing to find the energy of detonation of TNT).
    

 How likely do you think we could disrupt the structure of the Earth by simultaneously detonat-
ing all nuclear weapons?
    

An intensive search yields the value for the detonation energy of 1M ton of TNT as approxi-

mately 4 ÿ 1015J.  Thus, the total explosive power of 104 warheads is only ~ 1019 J, a nanounit of
the Earth's binding energy.

 c) Compare this binding energy to the kinetic energy of an incoming sphere of radius 5 km and

approaching the earth at 30 km/s.  Assume the object has a uniform density of  3000 kg  m3

(roughly the density of rocky matter.)

KE =
1

2
m v2 =

1

2
1.6 x1015 kg 3 x10^4 m  s2 = 7 x1023 J

Still no fragmentation, but it will be quite a spectacle.
  

2.  In the last homework assignment, you studied the orbital elements of Halley' s Comet.  Use
the orbital data contained in Chapter 2 to estimate how long Comet Halley is inside the Earth' s
orbit.  Show your work/method clearly.  You might find it useful to estimate the upper bound of
this time.

I will start by plotting on the same scale a portion of the orbit of Halley with the orbit of the
Earth.  I will assume the Earth' s orbit is circular :
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Clearacomet, aearth, e
acomet  17.9; aearth  1; e  0.9673;

g1  PolarPlotaearth, , 0, 2 ;

g2 

PolarPlot acomet 1  e^2  1  e Cos, , 2   3, 2   3;

Showg1, g2
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In this diagram, q = 0 occurs at cometary perihelion.  The diagram also suggests that a reason-
able way to start is to find the points of intersection between the Earth' s orbit and the orbit of
Halley.  We do so by equating their polar equations :
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1 = 17.9 1 - 0.9672  1 + 0.967 cos q fl

1 + 0.967 cos q = 1.162 fl cos q = 0.167 fl q = ≤ 80.4 o

Halley is interior to the Earth' s orbit for 2*80.4 = 160.8 degrees of the Earth' s total path around
the sun.  This represents 0.45 of a year, or a time of 5.35 months.  Since Halley is faster than the
Earth at all points during this time, we can conclude that Halley will spend less than 5.3 months
of its 76 year period interior to the Earth.  

Let' s see if we can calculate a more precise number.  Kepler' s second law tells us that an object
orbiting the sun will sweep out equal areas in equal times.  If we can compute the area swept out
by Halley while it is interior to the sun, we can determine how long Halley will be interior to the
Earth.  Recall from Chapter 2 that the conservation of angular momentum yields :

dA =
1

2
r2 dq

where dA is an element of area swept out by the comet, r is its distance from the sun, and q is its
angle with respect to the perihelion line.  Then, we can calculate the fraction of the entire orbit
Halley is inside the Earth' s orbit by considering the ratio :


-1.40

1.40 dq

1 + e cos q2


0

2 p dq

1 + e cos q2

Notice that by taking the ratio, we can omit all constant factors such as a1 - e2). Setting e=.967

and evaluating, we find:

In[11]:= NIntegrate1  1  0.967 Cos^2, , 1.4, 1.4 
NIntegrate1  1  0.967 Cos^2, , 0, 2 

Out[11]= 0.00280835

And this represents the fraction of the entire orbit spent  interior to the Earth' s orbit.  Since the
period of Halley is 12*76 months, this is equivalent to :

In[12]:=  12  76

Out[12]= 2.56121
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Or 2.5 months interior to the Earth, very consistent with our cruder estimate.
  

3.  Starting with Eq. 3 - 22, show how you can derive eq. 3 - 24 from eq. 3 - 22; in other words,
show they are equivalent expressions.

Start with :

(1)
Bl T dl =

2 h c

l5

2 1

eh cl k T - 1
dl

To convert to an expression for frequency, we must make the following TWO substitutions :

n =
c

l
and dl =

-c

n2
dn

substituting these into eq. (1) gives us :

Bn T dn =
2 h c2

c  n5

1

ehnkT - 1

c

n2
dn =

2 h n3

c2

1

ehnkT - 1
dn

4.  3.2 page 81

We begin by relating flux to luminosity and distance.  We know that the luminosity of the bulb
is 100 W, and we are asked to find the distance where its flux will be equal to the solar constant,

1365 W  m2.

F =
L

4 p r2
fl r =

L

4 p F
=

100 W

4 p * 1365 W  m2
= 0.076 m

5.  3.8 page 81

    a) The energy emitted by a blackbody of area A and temperature T is:
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L = As T4

where s is the Stefan - Boltmann constant.  For the data provided for the human, we get :

L = As T4 = 1.4 m2 * 5.67 μ 10-8 W m-2 K-4 * 306 K4 = 696 W

      b) Using Wien' s Law, we obtain :

lmax =
0.0029

306
= 9.477 μ 10-6 m = 9477 nm

far in the infrared part of the spectrum.  This is why we are detectable at night with IR detecting
equipment.

c E = As T4 = 1.4 m2 * 5.67 μ 10-8 W m-2 K-4 * 293 K4 = 585 W

      d) total energy loss = 585 W - 696 W = -111 W

6.  3.9 pp 81 - 82

a L = 4 pR2 s T4 = 1.17 μ 1031 W = 30 468 solar luminosities

b M = Msun - 2.5 log L

Lsun
 = 4.77 - 2.5 log30 468 = -6.44

c m - M = 5 log
d

10 pc
fl m = -6.44 + 5 log 123

10
 = -0.99

d m - M = -0.99 - -6.44 = 5.45

e F = s Te
4 = 5.67 μ 10-8 W m-2 K-4 * 28 000 K4 = 3.48 μ 1010 W

f  Fearth =
L

4 p r2
=

1.17 μ 1031 W

4 p 3.79 μ 1018 m2
= 6.48 μ 10-8 W m-2

Remember to convert parsecs Ø meters;

1 pc = 3.26 ly = 3.26 * 3.15 μ 107 s  yr ÿ 3 * 108 m  s = 3.08 μ 1016 m
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g lmax =
0.0029

T
=

0.0029

28 000
= 1.04 μ 10-7 m = 104 nm

7.  3.12 page 82

We want to find when the Planck function reaches a maximum.  Finding the extrema of a func-
tion requires setting the first derivative to zero.  Starting first with the wavelength description of
Planck' s law, we have :

d

dl
Bl T = d

dl
 2 h c2

l5
eh c  l k T - 1-1 =

2 h c2 -5

l6
eh c  l k T - 1-1

+
1

l5
ÿ -1 eh c  l k T - 1-2

ÿ -
h c

l2 k T
ÿ eh cl k T = 0

Rearranging and dividing through by the commone exponential factor, we get :

5

l6
=

h c

kT
ÿ

1

l7
eh c  l k T - 1-1

eh cl k T fl 5 eh c  l k T - 1 = h c

l k T
eh cl k T

Let' s set x = h c/ l k T, so we have :

5 ex - 1 = x ex

Solving this equation for x will give us the conditions for a maximum in the Planck distribution.
We can solve this graphically :

Plot5 Expx  1, x Expx, x, 0, 6

1 2 3 4 5 6

500

1000

1500

And we can see there is a solution near 5
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We can use Solve :

Solve5 Expx  1  x Expx, x  N

InverseFunction::ifun : Inverse functions are being used. Values may be lost for multivalued inverses. à

Solve::ifun :
Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution

information. à

x  0., x  4.96511

Which Mathematica will do after reminding us this is a non - algebraic equation, or we can try :

FindRoot5 Expx  1  x Expx, x, 5

x  4.96511

Which elicits much more socially acceptable behavior from Mathematica.

We now know that we obtain a maximum in the Planck function when x = 4.965.  Recall that x
= h c/ l k T, and we can write that the maximum in the Planck distribution occurs when :

lmax =
h c

4.965 k
ÿ

1

T
=

6.62 μ 10-34 Js ÿ 3 108 m  s

4.965 ÿ 1.38 μ 10-23 m2 kg s-2 K-1
=

0.0029

T

If we use the frequency forumlation :

d

dn
Bn T = d

dn

2 h n3

c2
ÿ

1

eh nkT - 1
=

2 h

c2
3 n2 ÿ

1

eh nkT - 1
+ n3 +

-1

eh n  k T - 12
ÿ eh nkT ÿ

h

kT
 = 0

Dividing through by the common denominator :

3 =
h n

kT
eh nkT 1

eh nkT - 1

Setting x = h n/kT, t he condition for a maximum in the Planck frequency distribution becomes :

3 ex - 1 = x ex fl

FindRoot3 Expx  1  x Expx, x, 3
x  2.82144

Finally, we can find

8   phys380-2011hw3s.nb



2.82 = h n  k T fl vmax = 5.88μ 1010 T
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