
PHYS 380

HOMEWORK #7

For discussion on Oct 27 and submission on Nov. 1

All questions from the text :

1.  9.1   This will give you a chance to do calculations with energy density, flux, and think about
the nature of the radiation in your eye.

The energy density of  blackbody radiation is :

u =
4s T4

c

where s is the Stefan - Boltzmann constant and c is the speed of light.  For an eye of radius  1.5
cm, the total energy in the eyeball is

eyeball energy = u V =
4s T4

c

4

3
p r3

For T = 310 K and r = 0.0015 m, the energy in the eye cavity is 10-10J

The flux from the light bulb at a distance of 1 m is :

F =
L

4 p r2
=

100 W

4 p 1 m2
= 7.96 W

The amount of energy entering the eye each second  is area x flux :

energy entering eye  sec = 7.96 W * 10-5 m2  s = 7.96 x10-5 J  s.

A simple dimensional analysis suggests that we should multiply J/s by time to determine the
energy in the eye at a specific time; but what is the relevant time? The transit time for light to
cross the eye is the diameter of the eye/speed of light, so at any given time, the amount of energy
in the eye is :



Energy in eye = 7.96 x10-5 J  s *
2 * 0.015 m

3 x 108 m  s
= 7.96 * 10-15 J

four orders of magnitude less than the blackbody radiation generated inside the eye.  Then why
is it not light when we close our eyes?  Because the wavelength of maximum emission for a
blackbody of 310 K is in the infrared, beyond the range of senstitivity for our eyes.
  

2.  9.6

We will calculate the mean free path for nitrogen molecues at room conditions,  and use this
result in conjunction with the root mean square speed to determine the time between collisions.
We start by computing the root mean square speed :

vrms =
3 k T
mmH

= 3 * 1.38 x 10-23 JK *300 k

28 *1.6 x10-27 kg
= 526 m  s

We will find the mean free path from :

l = 1
ns

where l is the mean free path, n is the number density of nitrogen molecules, and s is the cross -
sectional area for collisions.  We will adopt the shift in reference frame used in the text where
we imagine a molecule of radius 2 r is moving through an ensemble of point particles.  Then, the
cross sectional area for our molecule of radius 2 r becomes :

s = p 2 r2 = p 2 x 10-10 m2
= 1.26 x10-19 m2

We are given the mass density of nitrogen, and can find the number density from :

n = r
mmH

= 1.2 kg m-3

28 * 1.6 x10-27 kg
= 2.68 x 1025 m-3

Finally, the mean free path is :

l = 1
ns

= 1

2.68 x1025 m-3 * 1.26 x10-19 m2
= 2.96 x10-7 m

about 1000 molecular radii
and the time between collisions is simply :
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time = mean free path
vrms

= 2.96 x10-7 m
526 ms = 5.63 x10-10 s

3.  9.8.  You should be able to obtain an expression for the optical depth of the earth' s atmo-
sphere based in terms of the intensities I1 and I2  and the angles q1 and q2.  You should also be
able to derive an expression for the intensity at the top of the earth's atmosphere in terms of
intensities and angles.

This example will show how we can use the observables, the intensities of an object measured
on the surface of the earth at two different angles, to determine the intensity of the radiation field
at the top of the earth' s atmosphere, and also the vertical optical depth through the atmosphere.

We know the intensity received onthe surface is 

Il = Il,0 e-tl,0 secq

where Il  is the intensity measured on the surface of the earth, Il,0   is the intensity measured at

the top of the atmosphere, q is the angle of the object from the vertical, and tl,0  is the vertical

optical depth.  To save typing, I will delete the subscripts for l, understanding that these are all
wavelength dependent  properties.   Therefore,  we can write I1  and I2  as the surface measure-
ments when the star is observed at angles q1and q2:

(1)I1 = I0 e- t0 sec q1 ; I2 = I0 e- t0 sec q2

Take ratios of the intensities and find :

I1

I2

= e-t0 secq1-sec q2

Now take the natural log of both sides :

ln
I1

I2

= - t0 sec q1 - sec q2

Solving for vertical optical depth :

t0 =
ln I1  I2

sec q2 - sec q1

We can now solve for vertical optical depth in equations (1) and after taking lns, obtain :
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t0 =
ln I1  I0

sec q1

and t0 =
ln I2  I0

sec q2

Since t is the same, we equate the expressions :

ln I1  I0
sec q1

=
ln I2  I0

sec q2

Solving for Il,0 (and after much algebra utilizing the laws for logs):

Il,0 =
I2
sec q1

I1
sec q2

1sec q1 - sec q2

4.   9.21
As indicated, start with:

I 0 = I0 e-tv,0 sec q - 
tv,0 sec q

0

Sl sec q e-tv,0 sec q dtv

We are told that there is no radiation entering from outside, so the first term on the right goes to
zero; we are also told to assume that Sl does not vary with position, which allows us to treat this

as a constant in the integrand, making integration of the second term on the right quite simple,
and we obtain:

I 0 = Sl 1 - e-tl,0

and we investigate the properties of this solution for the cases t >> 1 and t << 1.

If t >> 1 (optically thick case), we see that the exponential term goes to zero, leaving only Il (0)

= Sl = Bl  since we know an optically thick gas will be in LTE. Thus, the intensity we observe

will be the continuum blackbody radiation.

In the case of t << 1, we can EXPAND THE EXPONENTIAL IN A POWER SERIES . Truncat-
ing the series after the second term (since all higher terms will approach zero), we obtain :

Il 0 = Sl 1 - 1 - tl,0 = Sl tl,0
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We can investigate further the properties of the optically thin case.  We know from the definition
of optical depth that

tl,0 = kl r s or in this case kl r L since our length is L

and that :

Sl = jl  kl fl Il 0 = jl  kl kl r L = jl r L

This means that the intensity we observe will be large where jl is large; in other words, we see

emission lines in the optically thin case at those wavelengths where j is large (i.e., where there
are spectral lines).

5.  9.24

We are given the hint to review the chapter on celestial mechanics to remind us of the properties
of ellipses.  The equivalent width of a spectral line is the width of a box (reaching to the contin-
uum) whose area matches the area of the spectral line.  We know from lots of sources (celestial
mechanics, vector calculus) that the area of an ellipse is p a b  where a and b are the semi-major
and semi-minor axes respectively.  

In this case, we are told we can model the spectral line as a semi-ellipse, so that we know its area
is p a b/2.  We are also told that there is zero flux at the center of the spectral line, so that we
know the length of its equivalent "box" is equal to the semi-major axis of the ellipse, a.  There-
fore, the equivalent width of this line is:

W =
p a b  2

a
=
p b

2

6.  9.26

This problem has been deferred until the next homework set, due Nov. 8, 2011.
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